No organ or tissue can be sustained without a viable vasculature. Hence, the study of vascular remodeling and regeneration, both pathological and physiological, is of central importance for understanding disease processes from the perspective(s) of initiation, prevention, and/or cure. Recognizing that vascular biology is at the heart of biomedical research, both present and future, we plan to ensure the existence of a cadre of competent vascular scientists with a strong background in organ biology/pathology and imaging techniques by implementing a unique, cross-campus pre-doctoral fellow training program for students who have elected to do their thesis work on subjects related to vascular remodeling and regeneration. Although housed within an established graduate program (Cellular and Molecular Pathology) in the School of Medicine (SOM), our Angiopathy Training Program (ATP) will be open to students from other graduate programs (Cell Biology, Engineering, etc) at the University of Pittsburgh (UOP). Our goal of comprehensively training committed vascular biologists (3 funded students admitted/year, 2 vears funding) will be met through a combination of required and elective courses, dedicated resources, and an interactive training faculty comprised of basic scientists, clinicians, and physician-scientists. The multi-faceted ATP curriculum consists of established courses from within the various graduate programs and emphasizes organ biology, angiogenesis, and imaging, while providing basics such as statistics, ethics, and grant writing. A dedicated training facility for microscopy has been designated for our use by the Center for Biologic Imaging, with resources for clinical imaging available to students through the SOM. Finally, ONE OF THE PIs HEADS a Center for Vascular Remodeling and Regeneration (CVRR), recently established at the UOP, uniting a consortium of faculty from multiple University schools (Medicine, Public Health, etc.) who commonly study and/or teach diverse aspects of vascular biology in basic and/or clinical venues. Our ATP faculty has been carefully selected from CVRR participants (MDs, PhDs, MD/PhDs) who we believe can best recruit, train, and/or directly mentor students for this program. We believe that a unified effort under the ATP, via maximized usage of available resources, will ensure the future of biomedical science by training competent, vascular-centric scientists

Public Health Relevance

The field of vascular biology is critical for understanding all types of disease as no organ can be sustained without a viable vasculature. This program will recruit and train vascular scientists for our future, by providing them with a substantial background in organ biology/pathology in addition to their training in the vasculature.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-M (F1))
Program Officer
Scott, Jane
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Krawiec, Jeffrey T; Liao, Han-Tsung; Kwan, LaiYee Lily et al. (2016) Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg :
Kikuchi, Alexander; Monga, Satdarshan Pal (2015) PDGFRα in liver pathophysiology: emerging roles in development, regeneration, fibrosis, and cancer. Gene Expr 16:109-27
Billaud, Marie; Chiu, Yu-Hsin; Lohman, Alexander W et al. (2015) A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal 8:ra17
Oczypok, Elizabeth A; Oury, Tim D (2015) Electron microscopy remains the gold standard for the diagnosis of epithelial malignant mesothelioma: a case study. Ultrastruct Pathol 39:153-8
Kang, Liang-I; Isse, Kumiko; Koral, Kelly et al. (2015) Tissue-type plasminogen activator suppresses activated stellate cells through low-density lipoprotein receptor-related protein 1. Lab Invest 95:1117-29
Logan, Greg J; Dabbs, David J; Lucas, Peter C et al. (2015) Molecular drivers of lobular carcinoma in situ. Breast Cancer Res 17:76
Gregory, Alyssa D; Kliment, Corrine R; Metz, Heather E et al. (2015) Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 98:143-52
Koral, Kelly; Paranjpe, Shirish; Bowen, William C et al. (2015) Leukocyte-specific protein 1: a novel regulator of hepatocellular proliferation and migration deleted in human hepatocellular carcinoma. Hepatology 61:537-47
Krawiec, Jeffrey T; Weinbaum, Justin S; St Croix, Claudette M et al. (2015) A cautionary tale for autologous vascular tissue engineering: impact of human demographics on the ability of adipose-derived mesenchymal stem cells to recruit and differentiate into smooth muscle cells. Tissue Eng Part A 21:426-37
Mutchler, Stephanie M; Straub, Adam C (2015) Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 49:8-15

Showing the most recent 10 out of 32 publications