This program will train 6 postdoctoral fellows annually in mechanisms and Innovation in vascular disease. The program goals include rigorous training in the scientific method, critical analysis, logical reasoning and independent thinking, all within a highly collaborative working group. Trainees will develop a focused area of translational vascular research expertise and will be exposed to a wide range of complementary research techniques. Mentors will provide collegial and productive collaboration, and help to hone skills in oral and written communication, and to instill respect for the responsible conduct of research. Fellows will undergo a minimum two-year education and research program, although we only intend to fund the first year through the institutional T32. Fellows will be encouraged and mentored in their development of funding proposals for the second year. The overarching goal for this program is to produce researchers who are well-schooled in the fundamental problems of vascular disease, and are driven to find innovative strategies to tackle those problems, thereby translating basic research into clinical success. Fellows will receive their training in a multidisciplinary milieu of fundamental, translational and clinical research in vascular biology and disease. The Stanford Cardiovascular Institute (CVI) offers a unique platform by which to train the next generation of basic and translational scientists. Mentors for the proposed program, all members of the CVI, come not only from vascular medicine, but also from materials science, bioengineering, imaging, and health research and policy. Brought together in a collaborative Institute, these scientists share a common interest in the mechanisms behind vascular development and disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL098049-03
Application #
8294715
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
3
Fiscal Year
2012
Total Cost
$369,814
Indirect Cost
$27,394
Name
Stanford University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Zuniga, Mary C; White, Sharla L Powell; Zhou, Wei (2014) Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation. Vasc Med 19:394-406
Shao, Zhifei; Morser, John; Leung, Lawrence L K (2014) Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment. J Biol Chem 289:27146-58
Kojima, Yoko; Downing, Kelly; Kundu, Ramendra et al. (2014) Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 124:1083-97
Downing, Kelly P; Nead, Kevin T; Kojima, Yoko et al. (2014) The combination of 9p21.3 genotype and biomarker profile improves a peripheral artery disease risk prediction model. Vasc Med 19:3-8
Xu, Hui; Ferreira, Meghaan M; Heilshorn, Sarah C (2014) Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab Chip 14:2047-56
McLaughlin, Laura M; Xu, Hui; Carden, Sarah E et al. (2014) A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol (Camb) 6:438-49
Xu, Hui; Heilshorn, Sarah C (2013) Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 9:585-95
Shamloo, Amir; Xu, Hui; Heilshorn, Sarah (2012) Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng Part A 18:320-30