Our goal is to train the next generation of biomedical scientists focused on respiratory disorders. The faculty in this training program, led by the University of California San Diego (UCSD) Pulmonary Critical Care (PCCM) and Physiology Divisions, are prepared to train and transform MD and PhD candidates into medical scientists who will advance our understanding of lung disease and respiratory biology. We have focused on three scientific themes in a multidisciplinary training program: Airway Inflammation and Immunology, Pulmonary Vascular Biology and Hypoxia and Sleep. All three scientific themes will stress the principle of innovation. Our training environment and educational activities are designed to stimulate scientific creativity by emphasizing a multidisciplinary approach to crucial research questions. Trainees will choose mentors from several Divisions and Departments with a wide range of expertise in pulmonary medicine and biomedical sciences where they will be exposed to cutting edge ideas and protocols. Integration is germane to a successful program where trainees will work across the boundaries of traditional disciplines in basic and clinical science. Trainees will focus on research in one of the three themes selected for high probability of integration. The themes of Airway Inflammation and Immunology, Pulmonary Vascular Biology, and Hypoxia and Sleep are central to modern respiratory biology and pulmonary medicine research plus they are strongly linked at UCSD by both formal and informal collaborations between laboratories with international reputations in these areas. Translation of basic science discoveries to clinical practice is at the core of our program. For example, MDs who enter the program will participate in basic science didactic sessions to optimize their scientific background. We also take advantage of unique translational programs at UCSD such as the "Med into Grad" program for Ph.D. students funded at UCSD by the Howard Hughes Medical Institute (HHMI). At the postdoctoral level, trainees with interest in further formal education in epidemiology and biostatistics beyond that provided by this training grant have the opportunity to take supplemental courses in patient and population-based clinical research through the UCSD Clinical Research Enhancement through Supplemental Training (CREST) program. In some cases, interested trainees will work towards completion of a Master's in Public Health in epidemiology or biostatistics through the San Diego State University Graduate School of Public Health.

Public Health Relevance

To prevent or treat lung disorders, the education of basic and clinical investigators committed to an academic career in respiratory problems is critical. Traditional single-disciplined training is no longer adequate to prepare trainees for an academic career. Novel, cross-collaborative approaches involving both MDs and PhDs are necessary and our proposed training program will maximize the strong foundations in pulmonary medicine and respiratory biology at UCSD to train the next generation of respiratory academicians in multidisciplinary approaches.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Tigno, Xenia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Kawamura, Tetsuya; Stephens, Bryan; Qin, Ling et al. (2014) A general method for site specific fluorescent labeling of recombinant chemokines. PLoS One 9:e81454
Yin, Xin; Johns, Scott C; Kim, Daniel et al. (2014) Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node. J Immunol 192:2133-42
Thomas, Joanna L; Dumouchel, Justin; Li, Jinghong et al. (2014) Endotracheal intubation in mice via direct laryngoscopy using an otoscope. J Vis Exp :
Fernandes, Timothy M; Auger, William R; Fedullo, Peter F et al. (2014) Baseline body mass index does not significantly affect outcomes after pulmonary thromboendarterectomy. Ann Thorac Surg 98:1776-81
Lorenzo, Felipe R; Huff, Chad; Myllymäki, Mikko et al. (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46:951-6
Marsh, James J; Chiles, Peter G; Liang, Ni-Cheng et al. (2013) Chronic thromboembolic pulmonary hypertension-associated dysfibrinogenemias exhibit disorganized fibrin structure. Thromb Res 132:729-34
Li, Jinghong; Lin, Ko-Wei; Murray, Fiona et al. (2013) Regulation of cytotoxic T lymphocyte antigen 4 by cyclic AMP. Am J Respir Cell Mol Biol 48:63-70
Lu, David; Soleymani, Sahar; Madakshire, Rohit et al. (2012) ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 26:2580-91