This application requests funds to continue our integrated basic neuroscience training program at the University of Pittsburgh and Carnegie Mellon University. This training grant (T32 NS07433), currently in its 14th year of funding, has been successful in recruiting and training high quality predoctoral students in neuroscience. Funds are requested to support 8 graduate students in their first or second year in the Center for Neuroscience at the University of Pittsburgh and the Center for the Neural Basis of Cognition, which is a joint center of the University of Pittsburgh and Carnegie Mellon University;these 8 students represent the top 20-25% of eligible trainees in these programs. The program described in this application focuses primarily on research training in the laboratories of a large and diverse neuroscience training faculty. Students begin laboratory research immediately upon entering the program, and rotate through at least two laboratories, for one terms each, in their first year. The training faculty, consisting of 77 faculties from the University of Pittsburgh and Carnegie Mellon University, provides expertise in neuroscience ranging from cellular and molecular to developmental to systems to perception and cognition, and students are exposed to this breadth of neuroscience. In addition to research, students take a series of two intensive one-term core courses in basic neuroscience, at least three elective courses in neuroscience or related areas, a course in statistics, a course in grant writing, and a variety of seminars and journal clubs. Trainees also participate actively in a series of professional development workshops that provide explicit training in such """"""""survival skills"""""""" as written and oral communication, obtaining jobs and grants, teaching, and managing a research lab. Training in the responsible scientific conduct is an integral part of the professional development workshops, the core curriculum, and laboratory training. Students are encouraged to consider a wide range of employment opportunities within which to exercise their skills in research, and seminars are held to permit them to become familiar with employment both within and outside of traditional academic research universities. A solid structure is in place to mentor the trainees and monitor their progress through the program. Students pass through a series of milestones, including the first-year Reprint Exam, a second-year research evaluation, and a grant proposal-based comprehensive exam in the third year, prior to submitting a thesis proposal and progressing to full-time thesis research. Each student has an advising committee to see them through these milestones and assist with their mentoring. Data are presented to document that we recruit outstanding trainees and provide them with excellent training.

Public Health Relevance

This application requests funds to continue to support the top graduate students in their first or second year of training in our integrated basic neuroscience training program at the University of Pittsburgh and Carnegie Mellon University. We have a broad, well-developed, an integrated training program in neuroscience that has a history of recruiting excellent students and providing excellent training by a large and diverse group of training faculty. The training program is focused on training in research laboratories integrated with a mix of coursework and training in responsible conduct of research and professional skills.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Institutional National Research Service Award (T32)
Project #
5T32NS007433-17
Application #
8675955
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Korn, Stephen J
Project Start
1998-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
17
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Neurosciences
Type
Schools of Arts and Sciences
DUNS #
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Bowman, Shanna Lynn; Shiwarski, Daniel John; Puthenveedu, Manojkumar A (2016) Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling. J Cell Biol 214:797-806
Tian, Xufan; Irannejad, Roshanak; Bowman, Shanna L et al. (2016) The α-Arrestin ARRDC3 Regulates the Endosomal Residence Time and Intracellular Signaling of the β2-Adrenergic Receptor. J Biol Chem 291:14510-25
Corbit, Victoria L; Whalen, Timothy C; Zitelli, Kevin T et al. (2016) Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 36:5556-71
Willard, A M; Bouchard, R S; Gittis, A H (2015) Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience 301:254-67
Moyer, Caitlin E; Shelton, Micah A; Sweet, Robert A (2015) Dendritic spine alterations in schizophrenia. Neurosci Lett 601:46-53
Beukema, Patrick; Yeh, Fang-Cheng; Verstynen, Timothy (2015) In vivo characterization of the connectivity and subcomponents of the human globus pallidus. Neuroimage 120:382-93
Clemens, Katerina; Yeh, Chung-Yang; Aizenman, Elias (2015) Critical role of Casein kinase 2 in hepatitis C NS5A-mediated inhibition of Kv2.1 K(+) channel function. Neurosci Lett 609:48-52
Bowman, Shanna L; Soohoo, Amanda L; Shiwarski, Daniel J et al. (2015) Cell-autonomous regulation of Mu-opioid receptor recycling by substance P. Cell Rep 10:1925-36
Soohoo, Amanda L; Bowersox, Shanna L; Puthenveedu, Manojkumar A (2014) Visualizing clathrin-mediated endocytosis of G protein-coupled receptors at single-event resolution via TIRF microscopy. J Vis Exp :e51805
Patel, Vivek P; Chu, Charleen T (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson's disease. Exp Neurol 257:170-81

Showing the most recent 10 out of 28 publications