The Interdisciplinary Program in Neurosciences (IPN) at Georgetown University is a broad-based, transdisciplinary, non-departmental program leading to a Ph.D. in Neuroscience. The program, established in 1994, trains students in the scholarly pursuit of research in integrative neuroscience, from the cell to the intact behaving organism. The 32 core training faculty and 20 supporting faculty are drawn from 14 clinical and basic science departments on the Main Campus and Medical Center;they span a breadth of inquiry, ranging from neurotransmitter receptors and signal transduction, to behavior and human disease. Areas of research strengths include 1) neural injury, degeneration, and plasticity;2) synaptic modulation and signal transduction;4) neural substrates of autism, epilepsy, schizophrenia, dementias, and addiction;and 5) telencephalic neural networks subserving sensory processing, memory and language. Students gain training in a range of approaches, including molecular, genetic, neurophysiological, cognitive testing, computational and imaging techniques. Training Grant funds support prethesis training (8 slots during the first 2 years);research grants and individual fellowships support thesis research. The program enrolls 40-50 thesis and prethesis students. Aggressive recruitment of underrepresented racial and ethnic applicants continues to be a top priority. The training environment fosters interactive, pandisciplinary research of both faculty and trainees. Over 40% of the core training faculty are in close proximity in the Research Building, with state-of-the-art core facilities and custom designed laboratory and office space. Faculty are highly collaborative;students are encouraged to seek co-mentorship between faculty with interfacing interests and complementary approaches. All core training faculty have research grant support and fully equipped facilities for training pre-and postdoctoral students. The recent recruitment of several neuroscience faculty into the Departments of Pharmacology, Psychology and Neuroscience, has expanded the equipment, facilities and faculty expertise available to the training program. The training program includes broad-based didactic coursework, as well as rotations in laboratories of the training faculty. The trainees participate in a seminar series, national professional meetings, journal clubs, intensive laboratory research, and training in several essential professional skills (writing and reviewing manuscripts, grantsmanship, mentorship, teaching, conflict resolution, career choices, oral presentations) and their ethical dimensions. Opportunities for gaining practical teaching experience at the undergraduate and secondary school levels are abundant and encouraged.

Public Health Relevance

The goal of the proposed training program is to prepare future scientists for a career as highly creative, inquisitive and productive biomedical researchers. We seek to provide the trainees, who are pursuing their Ph.D. in neuroscience, with broad-based interdisciplinary training relevant to understanding a variety of diseases and disorders of the nervous system. Through didactic coursework, laboratory research, career development skills training, and instruction in the responsible conduct of research, the students supported through this training mechanism will be poised to make important discoveries aimed at preventing and curing a spectrum of neurological and psychiatric disorders, such as autism, epilepsy, schizophrenia, dementias, communicative disorders, and addiction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Institutional National Research Service Award (T32)
Project #
5T32NS041231-12
Application #
8263417
Study Section
Special Emphasis Panel (ZEY1-VSN (01))
Program Officer
Korn, Stephen J
Project Start
2001-07-01
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
12
Fiscal Year
2012
Total Cost
$361,124
Indirect Cost
$17,268
Name
Georgetown University
Department
Type
Other Domestic Higher Education
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Forcelli, Patrick A; DesJardin, Jacqueline T; West, Elizabeth A et al. (2016) Amygdala selectively modulates defensive responses evoked from the superior colliculus in non-human primates. Soc Cogn Affect Neurosci 11:2009-2019
Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain et al. (2015) Functional MRI of the vocalization-processing network in the macaque brain. Front Neurosci 9:113
Vitantonio, Daniel; Xu, Weifeng; Geng, Xinling et al. (2015) Emergence of dominant initiation sites for interictal spikes in rat neocortex. J Neurophysiol 114:3315-25
Gordon, Evan M; Devaney, Joseph M; Bean, Stephanie et al. (2015) Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function. Cereb Cortex 25:336-45
Harrington, Rachael M; Chan, Evan; Turkeltaub, Peter E et al. (2015) Simple Partial Status Epilepticus One-day Post Single-pulse TMS to the Affected Hemisphere in a Participant With Chronic Stroke. Brain Stimul 8:682-3
Glezer, Laurie S; Kim, Judy; Rule, Josh et al. (2015) Adding words to the brain's visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA. J Neurosci 35:4965-72
Wurzman, Rachel; Forcelli, Patrick A; Griffey, Christopher J et al. (2015) Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders. Behav Brain Res 278:115-28
Daniele, Stefano G; Béraud, Dawn; Davenport, Connor et al. (2015) Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 8:ra45
Clifford, Meredith A; Athar, Wardah; Leonard, Carrie E et al. (2014) EphA7 signaling guides cortical dendritic development and spine maturation. Proc Natl Acad Sci U S A 111:4994-9
Gordon, Evan M; Breeden, Andrew L; Bean, Stephanie E et al. (2014) Working memory-related changes in functional connectivity persist beyond task disengagement. Hum Brain Mapp 35:1004-17

Showing the most recent 10 out of 33 publications