Synaptic activity is central to all behavior, learning, and memory;synaptic dysfunction leads to neurological disorders such as epilepsy, autism, Alzheimer's disease, depression, and sleep disorders. Developing new therapeutic approaches for preventing or treating synaptic dysfunction requires a continuing cadre of young investigators well-trained in multidisciplinary techniques to address synaptic function. This application requests five years of continued funding for the Synapse Neurobiology Training Program (SNTP), to support 4 predoctoral trainees per year, selected from a pool of highly qualified applicants in years 3-5 of thesis research relevant to synaptic structure and function. Research on synaptic function and dysfunction are strengths of the 20 SNTP faculty mentors. In the first 4 years of the SNTP, 11 trainees received individualized, in-depth, multidisciplinary training, 3 have completed their PhD degree and are engaged in academic research, biotech, and teaching careers. In addition, 6 new faculty members were recruited to the Department of Neuroscience, expanding and strengthening the multifaceted research approaches being taught to SNTP trainees and providing a rich diversity of thesis research labs investigating synapse neurobiology and synaptic disorders. SNTP trainees have access to cutting-edge tools and training in a wide array of research approaches via the NINDS-funded Center for Neuroscience Research Cores (Imaging, Behavior, Genomics, and Electrophysiology). The SNTP is further strengthened by a new, stand-alone Neuroscience Program and a curriculum that increases the depth and breadth of trainees'exposure to fundamental concepts in neuroscience, with particular emphasis on the synapse. The new curriculum shifts focus from lecture-based teaching to interactive, discussion-oriented small group sessions with faculty and hands-on workshops that hone the trainees'critical thinking and technical skills. SNTP trainees have multiple opportunities to interact with physician scientists through coursework, collaborative research projects, and one-on-one interactions with clinicians. The latter activity represents a new initiative that provides SNTP trainees with an opportunity to learn about diseases most relevant to their thesis work. Trainees also benefit from a Career Paths seminar series that exposes them to the diverse post-PhD career options available and to help them start a personal contact network. Annual research seminars by trainees hone their presentation skills and reinforce the highly interactive environment that characterizes the Tufts neuroscience community. SNTP trainees are capable, proactive, and motivated scientists, as evidenced by awards, presentations at national meetings, and student-led outreach activities that include teaching workshops at high schools and colleges with large populations of students from underserved groups. The SNTP provides trainees with the solid multifaceted foundation they need to build successful research careers and contribute to knowledge of both healthy and diseased nervous systems.

Public Health Relevance

The Synapse Neurobiology Training Program emphasizes the training of predoctoral students in critical thinking and multidisciplinary research approaches to study synapses-their structure and function and how they control circuits and behavior in normal and disease states. This training will contribute to the cadre of talented young researchers necessary to a vibrant neuroscience research community capable of developing new approaches for diagnosing, preventing, and treating neurological diseases caused by synaptic dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Institutional National Research Service Award (T32)
Project #
2T32NS061764-06
Application #
8666395
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Korn, Stephen J
Project Start
2008-07-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Tufts University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02111
Hanson, Elizabeth; Danbolt, Niels Christian; Dulla, Chris G (2016) Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust. Neurobiol Dis 89:157-68
Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z et al. (2016) Copper and protons directly activate the zinc-activated channel. Biochem Pharmacol 103:109-17
Armbruster, Moritz; Hanson, Elizabeth; Dulla, Chris G (2016) Glutamate Clearance Is Locally Modulated by Presynaptic Neuronal Activity in the Cerebral Cortex. J Neurosci 36:10404-10415
Sun, Xinxin; Pinacho, Raquel; Saia, Gregory et al. (2015) Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning. Dev Neurobiol 75:93-108
Hickman, Tyler T; Liberman, M Charles; Jacob, Michele H (2015) Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing. J Neurosci 35:9236-45
Hanson, Elizabeth; Armbruster, Moritz; Cantu, David et al. (2015) Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex. Glia 63:1784-96
Ng, Seng Kah; Higashimori, Haruki; Tolman, Michaela et al. (2015) Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 267:115-22
Pinacho, Raquel; Saia, Gregory; Meana, J Javier et al. (2015) Transcription factor SP4 phosphorylation is altered in the postmortem cerebellum of bipolar disorder and schizophrenia subjects. Eur Neuropsychopharmacol 25:1650-60
Jackson, F Rob; Ng, Fanny S; Sengupta, Sukanya et al. (2015) Glial cell regulation of rhythmic behavior. Methods Enzymol 552:45-73
Pinacho, Raquel; Saia, Gregory; Fusté, Montserrat et al. (2015) Phosphorylation of transcription factor specificity protein 4 is increased in peripheral blood mononuclear cells of first-episode psychosis. PLoS One 10:e0125115

Showing the most recent 10 out of 36 publications