Understanding normal brain development and function and how it is altered by disease, injury, or environmental factors is one of the most exciting frontiers remaining in biomedical science today. New knowledge and tools acquired over the past decade offer hope for the development of new therapies for neurodevelopmental disorders, psychiatric illnesses, spinal cord injury, stroke, and neurodegenerative diseases. However, to effectively apply basic science knowledge to address these neural disorders requires the training of a new generation of neuroscientists. The goal of this training program is to provide five trainees in the first two years of Ph.D. training with a deep understanding of nervous system function and dysfunction at multiple levels of organization (molecular, cellular, circuit, behavior) and with the ability to apply diverse approaches (molecular/genetic, physiology, imaging) to understand how the nervous system develops, functions, and responds to injury or disease. This will be achieved by a program of formal course work and laboratory rotations with a highly interactive group of trainers whose expertise spans a broad range of neuroscience, in addition to active, continuous self-learning though participation in journal clubs, outside seminars, and other interactive forums. The program is aimed at equipping the trainees with the skills needed to identify and solve important problems throughout their careers as independent scientists.

Public Health Relevance

The training provided by this program will enable a new generation of neuroscientists to apply their knowledge of basic neuroscience mechanisms to develop therapies for neurodevelopmental disorders, psychiatric illnesses, spinal cord injury, stoke, and neurodegenerative disorders.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-MRG-C (32))
Program Officer
Korn, Stephen J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Wyler, Steven C; Spencer, W Clay; Green, Noah H et al. (2016) Pet-1 Switches Transcriptional Targets Postnatally to Regulate Maturation of Serotonin Neuron Excitability. J Neurosci 36:1758-74
Puzerey, Pavel A; Kodama, Nathan X; Galán, Roberto F (2016) Abnormal cell-intrinsic and network excitability in the neocortex of serotonin-deficient Pet-1 knockout mice. J Neurophysiol 115:813-25
DeFrancesco-Lisowitz, A; Lindborg, J A; Niemi, J P et al. (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302:174-203
Savage, Julie C; Jay, Taylor; Goduni, Elanda et al. (2015) Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease. J Neurosci 35:6532-43
Wyler, Steven C; Donovan, Lauren J; Yeager, Mia et al. (2015) Pet-1 Controls Tetrahydrobiopterin Pathway and Slc22a3 Transporter Genes in Serotonin Neurons. ACS Chem Neurosci 6:1198-205
Skerrett, Rebecca; Pellegrino, Mateus P; Casali, Brad T et al. (2015) Combined Liver X Receptor/Peroxisome Proliferator-activated Receptor γ Agonist Treatment Reduces Amyloid β Levels and Improves Behavior in Amyloid Precursor Protein/Presenilin 1 Mice. J Biol Chem 290:21591-602
Lee, Sungho; Xu, Guixiang; Jay, Taylor R et al. (2014) Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci 34:12538-46
Puzerey, Pavel A; Decker, Michael J; Galán, Roberto F (2014) Elevated serotonergic signaling amplifies synaptic noise and facilitates the emergence of epileptiform network oscillations. J Neurophysiol 112:2357-73
Niemi, Jon P; DeFrancesco-Lisowitz, Alicia; Roldán-Hernández, Lilinete et al. (2013) A critical role for macrophages near axotomized neuronal cell bodies in stimulating nerve regeneration. J Neurosci 33:16236-48
Fox, Stephanie R; Deneris, Evan S (2012) Engrailed is required in maturing serotonin neurons to regulate the cytoarchitecture and survival of the dorsal raphe nucleus. J Neurosci 32:7832-42