The proposed training program is designed to meet the needs of an emerging discipline, and one reflecting the inherent similarities and distinctions among sensory systems. Surprisingly, this rapidly growing discipline of multisensory integration has a paucity of formal training opportunities and the present program offers a unique environment in which to meet this need at both the pre- and postdoctoral levels. Though its curriculum incorporates traditional topics relating to the development, organization, and perception/behavior derived from sensory processing in the different senses, the training program uniquely emphasizes the way in which sensory systems interact to markedly enhance or degrade the physiological salience of external events. Though bound together by common interests in hearing, the faculty provides expertise in each of the senses and, most importantly, has strong expertise in multisensory integration. Students in Neurobiology and Anatomy and the Interdisciplinary Program in Neuroscience are eligible. The training program offers a singular experience in topics such as neuropharmacology, electrophysiology, modern neuroanatomy and immunohistochemistry, computational neuroscience, development, cognition, psychophysics, behavior, and hands-on experience with a variety of laboratory techniques. These are normally covered in a generic manner, but are addressed here in the context of how individual sensory modalities process sensory information and the mechanisms that underlie their synergistic function. Students rotate through laboratories to gain in-depth experience in several sensory systems, but also have mini-courses to give them practical experience in techniques beyond those they may use for a current research project. All students and faculty participate in a seminar series and journal club that is topic-keyed to the core courses in Sensory Neuroscience, ensuring continuing broad intellectual and collegial interactions. Students are exposed to training opportunities and experts that offer advice regarding career paths in addition to traditional tenure-track academic positions. The training faculty is a relatively small group of investigators involved in broad collaborative interactions providing a highly cooperative and rich interactive environment for trainees. A major focus for the training program continues to be the recruitment of underrepresented minorities.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-P (56))
Program Officer
Korn, Stephen J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Costello, M Gabriela; Zhu, Dantong; May, Paul J et al. (2016) Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. J Neurophysiol 115:581-601
Miller, Ryan L; Pluta, Scott R; Stein, Barry E et al. (2015) Relative unisensory strength and timing predict their multisensory product. J Neurosci 35:5213-20
Zhou, Xin; Zhu, Dantong; Katsuki, Fumi et al. (2014) Age-dependent changes in prefrontal intrinsic connectivity. Proc Natl Acad Sci U S A 111:3853-8
Salinas, Emilio; Scerra, Veronica E; Hauser, Christopher K et al. (2014) Decoupling speed and accuracy in an urgent decision-making task reveals multiple contributions to their trade-off. Front Neurosci 8:85
Katsuki, Fumi; Constantinidis, Christos (2014) Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist 20:509-21
Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos (2014) Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks. Eur J Neurosci 40:2910-21
Katsuki, Fumi; Constantinidis, Christos (2013) Time course of functional connectivity in primate dorsolateral prefrontal and posterior parietal cortex during working memory. PLoS One 8:e81601
Costello, M Gabriela; Zhu, Dantong; Salinas, Emilio et al. (2013) Perceptual modulation of motor--but not visual--responses in the frontal eye field during an urgent-decision task. J Neurosci 33:16394-408