This application requests renewal of support for undergraduate and graduate training programs in computational neuroscience (TPCN) at both Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt), and for a summer school in computational neuroscience for undergraduates, which will be available to students coming from colleges and universities throughout the United States. The TPCN will administered by the Center for the Neural Basis of Cognition (CNBC), an umbrella organization operated jointly by CMU and Pitt that was established in 1994 to foster interdisciplinary research on the neural mechanisms of brain function, which now comprises 107 faculty having appointments in 20 departments. Research in neuroscience is crucial for attacking the causes of neurological and mental health disorders. If the field of neuroscience is to continue its rapid advance, neuroscientists must use, understand, and develop new technologies, acquire and analyze ever larger data sets, and grapple more directly with the complexity of neurobiological systems. In this effort, widespread development and adoption of new computational methods has become essential to progress. The primary goal of TPCN programs is to help train a new generation of interdisciplinary neuroscientists with strong quantitative skills. A second goal is the incorporation of computational and data analytic principles into the field of neuroscience through enhanced training at the undergraduate and graduate level. Trainees will work in vertically integrated, cross-disciplinary research teams. Graduate students will take courses in cognitive neuroscience, neurophysiology, and systems neuroscience;they will satisfy a depth requirement in quantitative methodology of their choice (involving computer science, engineering, mathematics, and/or statistics);they will have extended experience in at least one experimental laboratory;and they will take part in journal clubs and seminars within the large Pittsburgh computational neuroscience community. Year-long undergraduates will take courses in mathematics, computer programming, statistics, and neuroscience;they will take an additional course in neuroscience or psychology and a course in computational neuroscience;and they will complete a year-long research project. In addition, they will complete the summer program. Undergraduate trainees in the summer program will sit through a series of lectures on topics in computational neuroscience, including tutorials in Matlab, statistical methods, fundamentals of differential equations, and ideas of neural coding, and will complete a research project. All trainees will receive training in responsible conduct of research. Across 5 years of funding, TPCN will support 20 NRSA graduate students, 10 non-NRSA graduate students, 30 undergraduate year-long fellows, and 60 undergraduate summer fellows.

Public Health Relevance

Research in neuroscience is crucial for attacking the causes of neurological and mental health disorders. If the field of neuroscience is to continue its rapid advance, neuroscientists must use, understand, and develop new technologies, acquire and analyze ever larger data sets, and grapple more directly with the complexity of neurobiological systems. The primary goal of these training programs will be to help train a new generation of interdisciplinary neuroscientists with strong quantitative skills.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Interdisciplinary Research Training Award (T90)
Project #
5T90DA022762-08
Application #
8525367
Study Section
Special Emphasis Panel (ZDA1-MXL-F (10))
Program Officer
Volman, Susan
Project Start
2006-09-30
Project End
2016-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
8
Fiscal Year
2013
Total Cost
$180,562
Indirect Cost
$8,634
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Leeds, Daniel D; Tarr, Michael J (2016) A method for real-time visual stimulus selection in the study of cortical object perception. Neuroimage 133:529-48
Tripathy, Shreejoy J; Burton, Shawn D; Geramita, Matthew et al. (2015) Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types. J Neurophysiol 113:3474-89
Aminoff, Elissa M; Toneva, Mariya; Shrivastava, Abhinav et al. (2015) Applying artificial vision models to human scene understanding. Front Comput Neurosci 9:8
Bishop, William; Chestek, Cynthia C; Gilja, Vikash et al. (2014) Self-recalibrating classifiers for intracortical brain-computer interfaces. J Neural Eng 11:026001
Ghuman, Avniel Singh; Brunet, Nicolas M; Li, Yuanning et al. (2014) Dynamic encoding of face information in the human fusiform gyrus. Nat Commun 5:5672
Rager, Danielle M; Alvares, Darren; Birznieks, Ingvars et al. (2013) Generating tactile afferent stimulation patterns for slip and touch feedback in neural prosthetics. Conf Proc IEEE Eng Med Biol Soc 2013:5922-5
Leeds, Daniel D; Seibert, Darren A; Pyles, John A et al. (2013) Comparing visual representations across human fMRI and computational vision. J Vis 13:25
Zhou, Pengcheng; Burton, Shawn D; Urban, Nathaniel N et al. (2013) Impact of neuronal heterogeneity on correlated colored noise-induced synchronization. Front Comput Neurosci 7:113
Arthur, Joseph G; Burton, Shawn D; Ermentrout, G Bard (2013) Stimulus features, resetting curves, and the dependence on adaptation. J Comput Neurosci 34:505-20
Burton, Shawn D; Ermentrout, G Bard; Urban, Nathaniel N (2012) Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. J Neurophysiol 108:2115-33

Showing the most recent 10 out of 20 publications