We seek sponsorship from the NIH to support our innovative and successful program in the fundamentals and applications of neuroimaging, that is premised on the belief that neuroscientists of tomorrow are likely to require mastery of neuroimaging methods and principles in their work to address the growing burden of neurological disease and to perform the studies that will best advance our understanding of human behavior and cognition this applications includes both T-90 and R-90 components for our pre-doctoral students. The UCLA Comprehensive Neuroimaging Training Program (NITP) trains pre-doctoral students in principles of neuroimaging that are fundamental - common to most or all neuroimaging - in recognition of the rapid changes that have occurred and will continue in imaging technology. They are exposed to an unusually complete range of imaging approaches from cellular to whole brain, from structural to dynamic and inclusive of advanced multi- modality imaging. The NITP is both complementary to, and participatory in, existing programs in neurosciences and computational biology already well established at UCLA. The students benefit from the large and experience neuroimaging faculty and from courses newly developed for this program. The NITP has become integral to the graduate programs in multiple departments where its core courses in the Principles of Neuroimaging serve to bridge and integrate neuroscience, computation, physics and signal processing. Rounding out the NITP we have developed a summer Short Course consisting of an annual two-week course in Advanced Functional Neuroimaging. This course brings in 30 to 40 carefully selected scholars for an immersive program in advanced topics and methods, including lecture style classroom training, daily computer labs focused on computational tools and MRI physics, and imaging projects developed, run and analyzed by the student participants.

Public Health Relevance

The impact of Neuroimaging on brain studies at the anatomical and functional levels is overwhelming, and has changed the manner in which investigators approach the human brain in particular. The methods of neuroimaging are complex and varied. Traditionally, there has been a separation between people expert in imaging technology and those who are expert in neuroscience. This proposal asks for the continuation of an innovative and highly successful training program in Neuroimaging that demands that its students bridge the gap between technology and experimental science and in so doing expose foundational features that cut across the many imaging tools and the biological targets of neuroscience research and that can be treated with similar mathematical and conceptual formalisms.

National Institute of Health (NIH)
Interdisciplinary Research Training Award (T90)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1)
Program Officer
Grant, Steven J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Overall Medical
Los Angeles
United States
Zip Code
Kerr, Wesley T; Hwang, Eric S; Raman, Kaavya R et al. (2014) Multimodal diagnosis of epilepsy using conditional dependence and multiple imputation. Int Workshop Pattern Recognit Neuroimaging :1-4
Schreiner, Matthew J; Lazaro, Maria T; Jalbrzikowski, Maria et al. (2013) Converging levels of analysis on a genomic hotspot for psychosis: insights from 22q11.2 deletion syndrome. Neuropharmacology 68:157-73
Torrisi, Salvatore J; Lieberman, Matthew D; Bookheimer, Susan Y et al. (2013) Advancing understanding of affect labeling with dynamic causal modeling. Neuroimage 82:481-8
Payer, Doris E; Baicy, Kate; Lieberman, Matthew D et al. (2012) Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion 12:229-35
Jarcho, Johanna M; Berkman, Elliot T; Lieberman, Matthew D (2011) The neural basis of rationalization: cognitive dissonance reduction during decision-making. Soc Cogn Affect Neurosci 6:460-7
Wozny, David R; Shams, Ladan (2011) Recalibration of auditory space following milliseconds of cross-modal discrepancy. J Neurosci 31:4607-12
Payer, Doris E; Lieberman, Matthew D; London, Edythe D (2011) Neural correlates of affect processing and aggression in methamphetamine dependence. Arch Gen Psychiatry 68:271-82
Berkman, Elliot T; Lieberman, Matthew D (2010) Approaching the bad and avoiding the good: lateral prefrontal cortical asymmetry distinguishes between action and valence. J Cogn Neurosci 22:1970-9
Anderson, Ariana; Dinov, Ivo D; Sherin, Jonathan E et al. (2010) Classification of spatially unaligned fMRI scans. Neuroimage 49:2509-19
Berkman, Elliot T; Lieberman, Matthew D; Gable, Shelly L (2009) BIS, BAS, and response conflict: Testing predictions of the revised reinforcement sensitivity theory. Pers Individ Dif 46:586-591

Showing the most recent 10 out of 11 publications