Due to the differences among the genetic animals models being maintained, used and developed in 5 of the 6 INIA sites, a separate U-24 application to support genetic animal models is being submitted from each site. Dr. John Crabbe, Professor of Behavioral Neuroscience, Oregon Health Sciences University (OHSU), will serve as coordinator of the overall Genetic Animal Models Core described in this application. The major goal of the GAMC is to integrate animal model development, availability and usage across sites. Genetic animal models have been a major staple of alcohol research since the first were developed in the late 1940?s. It has oeen known for many years that animals experienced with alcohol self-administration and/or dependent on alcohol will increase their intake for a relatively short period of time after a period of withdrawal. However, these and other existing models are not yet optimal. Generally, the magnitude and architecture of the response does not convincingly display either gross excess or obvious loss of control that extends for a long time after the initial period of intoxicating self-administration. Virtually nothing is known about the genetic redisposition to self-administration potentiated by any of the above manipulations. Little to nothing has been done to characterize any of these phenomena in existing mouse genetic models of high or low ethanol drinking or high or low withdrawal. The general goals of the GAMC are to facilitate the development of more robust phenotypes and genotypes; facilitate the exploration of gene X environment interactions and facilitate development of novel genetic technology to explore the two-hit hypothesis, i.e. that at least two clusters of genes must be dysregulated to produce abusive self-administration; to achieve coordinated genetic animal model utilization and development across INIA sites and Cores; and to provide relevant data to the informatics Core. At the Portland site, specific emphasis is placed on development of novel models, coordination of animals and data, and provision of resources for rendering animals physically dependent on ethanol.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01AA013519-03
Application #
6653965
Study Section
Special Emphasis Panel (ZAA1-DD (20))
Program Officer
Noronha, Antonio
Project Start
2001-09-27
Project End
2006-08-31
Budget Start
2003-09-01
Budget End
2004-08-31
Support Year
3
Fiscal Year
2003
Total Cost
$427,082
Indirect Cost
Name
Oregon Health and Science University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Iancu, Ovidiu D; Colville, Alexander; Walter, Nicole A R et al. (2018) On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome. Addict Biol 23:196-205
Gavin, David P; Hashimoto, Joel G; Lazar, Nathan H et al. (2018) Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 9:346
Purohit, Kush; Parekh, Puja K; Kern, Joseph et al. (2018) Pharmacogenetic Manipulation of the Nucleus Accumbens Alters Binge-Like Alcohol Drinking in Mice. Alcohol Clin Exp Res 42:879-888
Metten, Pamela; Schlumbohm, Jason P; Huang, Lawrence C et al. (2018) An alcohol withdrawal test battery measuring multiple behavioral symptoms in mice. Alcohol 68:19-35
Iancu, Ovidiu Dan; Colville, Alex M; Wilmot, Beth et al. (2018) Gender-Specific Effects of Selection for Drinking in the Dark on the Network Roles of Coding and Noncoding RNAs. Alcohol Clin Exp Res :
Kafkafi, Neri; Agassi, Joseph; Chesler, Elissa J et al. (2018) Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci Biobehav Rev 87:218-232
Hashimoto, Joel G; Gavin, David P; Wiren, Kristine M et al. (2017) Prefrontal cortex expression of chromatin modifier genes in male WSP and WSR mice changes across ethanol dependence, withdrawal, and abstinence. Alcohol 60:83-94
Crabbe, John C; Ozburn, Angela R; Metten, Pamela et al. (2017) High Drinking in the Dark (HDID) mice are sensitive to the effects of some clinically relevant drugs to reduce binge-like drinking. Pharmacol Biochem Behav 160:55-62
Colville, A M; Iancu, O D; Oberbeck, D L et al. (2017) Effects of selection for ethanol preference on gene expression in the nucleus accumbens of HS-CC mice. Genes Brain Behav 16:462-471
Hitzemann, Robert; Oberbeck, Denesa; Iancu, Ovidiu et al. (2017) Alignment of the transcriptome with individual variation in animals selectively bred for High Drinking-In-the-Dark (HDID). Alcohol 60:115-120

Showing the most recent 10 out of 73 publications