Alcohol abuse and dependence affect an estimated 8.5% of the U.S. population and are responsible for substantial health and societal costs. The large conductance calcium-activated potassium (BK) channel, together with more than 20% of the proteins known to interact with BK a subunit, have been identified by the INIA-West consortium as potential genetic determinants of ethanol preference. In the present proposal, we hypothesize that perturbation of BK channel interaction network by alcohol in relevant brain regions contributes to excessive drinking. We will focus our investigation on the neurocircuitry subtending the motivational effects of ethanol (nucleus accumbens, amygdala and prefrontal cortex). We further hypothesize that ethanol-induced reorganization of the BK channel interactome mediates changes in neurotransmission and synaptic plasticity observed in ethanol-dependent animals. To test these hypotheses, we will quantify and manipulate expression levels of key interaction partners of the BK a subunit. The first Specific Aim is to characterize the phenotype of knockout mice deficient for either of the two neuronal auxiliary subunits of the BK channel. We will use assays of ethanol intoxication, tolerance and withdrawal, as well as paradigms of voluntary drinking leading to moderate or excessive ethanol intake. The second Specific Aim is to map the expression of known BK interaction partners in the nucleus accumbens, amygdala and prefrontal cortex, and assess how excessive ethanol exposure alters their protein levels. An innovative protein assay will be exploited for the simultaneous quantification of 19 BK channel subunits and interaction partners in brain samples. We will then assess how virally-mediated local silencing of the most promising genes affects ethanol self-administration. In a third Specific Aim, a similar functional approach will be used to probe the contribution of these genes to GABAergic neurotransmission in the amygdala and synaptic plasticity in the nucleus accumbens, in collaboration with INIA-West investigators. The proposed experiments are expected to uncover the contribution of BK channel interactome to ethanol self-administration and potentially pinpoint novel molecular targets for the treatment of alcoholism.

Public Health Relevance

This research project investigates the contribution of a major potassium channel of the brain to excessive alcohol drinking. We anticipate this work to provide integrated insights into the molecular mechanisms mediating the behavioral and cellular effects of alcohol. Translational implications include the identification of novel targets for the development of a more efficient treatment of alcoholism.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1-DD (50))
Program Officer
Reilly, Matthew
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Verheij, Michel M M; Vendruscolo, Leandro F; Caffino, Lucia et al. (2016) Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex. J Neurosci 36:8149-59
Wu, Jun-Long; Zhou, Shu-Xian; Zhao, Rui et al. (2016) MTHFR c.677C>T Inhibits Cell Proliferation and Decreases Prostate Cancer Susceptibility in the Han Chinese Population in Shanghai. Sci Rep 6:36290
Contet, Candice (2016) Preface. Int Rev Neurobiol 128:xiii-xiv
Munoz, Michaelanne B; Padgett, Claire L; Rifkin, Robert et al. (2016) A Role for the GIRK3 Subunit in Methamphetamine-Induced Attenuation of GABAB Receptor-Activated GIRK Currents in VTA Dopamine Neurons. J Neurosci 36:3106-14
Herman, Melissa A; Contet, Candice; Roberto, Marisa (2016) A Functional Switch in Tonic GABA Currents Alters the Output of Central Amygdala Corticotropin Releasing Factor Receptor-1 Neurons Following Chronic Ethanol Exposure. J Neurosci 36:10729-10741
Qu, Yuan-Yuan; Zhou, Shu-Xian; Zhang, Xuan et al. (2016) Functional variants of the 5-methyltetrahydrofolate-homocysteine methyltransferase gene significantly increase susceptibility to prostate cancer: Results from an ethnic Han Chinese population. Sci Rep 6:36264
Contet, C; Goulding, S P; Kuljis, D A et al. (2016) BK Channels in the Central Nervous System. Int Rev Neurobiol 128:281-342
Herman, Melissa A; Sidhu, Harpreet; Stouffer, David G et al. (2015) GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol. Proc Natl Acad Sci U S A 112:7091-6
Kreifeldt, Max; Cates-Gatto, Chelsea; Roberts, Amanda J et al. (2015) BK Channel β1 Subunit Contributes to Behavioral Adaptations Elicited by Chronic Intermittent Ethanol Exposure. Alcohol Clin Exp Res 39:2394-402
Contet, Candice; Kim, Airee; Le, David et al. (2014) μ-Opioid receptors mediate the effects of chronic ethanol binge drinking on the hippocampal neurogenic niche. Addict Biol 19:770-80

Showing the most recent 10 out of 13 publications