Alzheimer's disease (AD) affects half of the US population over the age of 85 and causes destruction of select networks and cell groups within the brain. AD manifests initially as mild cognitive decline, but gets progressively worse and is always fatal. Despite significant progress identifying susceptibility loci for AD in genome-wide association and whole exome sequencing studies, to date, a predictive risk score for AD that achieves clinical utility on an individual basis given DNA variation information alone has been elusive. This proposal aims to develop a multiscale-network approach to elucidating the complexity of AD. Multiscale network models causally linked to AD will be developed based on existing AD-related large scale molecular data and the high-impact, high-resolution complementary datasets generated through this application. Using brain slice cultures, iPS-cell-derived mixed cultures of human neuronal, oligodendroglial, and astrocytic cell systems, and fly models of AD, we seek to reconstitute the AD-related networks discovered in the multiscale analysis in these living systems and then employ high-throughput molecular and cellular screening assays to not only validate the actions of individual genes on molecular and cellular AD-associated processes, but also validate the molecular networks we implicated in the disease. Our initial multiscale studies have implicated the microglial protein TYROBP as one key driver of AD pathogenesis, a """"""""hit"""""""" we have partially validated, but that we will further validae along with other hits using iPSC-derived mixed cultures of different brain cell types, murine brain slices and AD fly models. We will analyze the potential ability for network-derived hits like TYROBP to modulate standard AD pathology involving A? and tau as well as its ability to shift networks in those same systems in such a way as to reflect the behavior of networks discovered in the multi-scale analysis. Importantly, the model building and validation will be iterated to produce updated/refined models based on validation results that, in turn, will be mined to generate updated lists of prioritized targets for validation. In this way, through the course of th grant, as new knowledge accumulates externally and as we generate increased amounts of data including validation data, our models will take into account the most up to date information to produce the most predictive models of AD. As a service to the AD research community, we will provide dramatically improved general access to large-scale, multidimensional datasets, together with systems level analyses of these datasets.

Public Health Relevance

We will develop and apply a multiscale-network approach to elucidate the complexity of Alzheimer's disease (AD) via the unbiased integration of large-scale molecular, cellular, and clinical data. Using murine brain slices, mixed human cell cultures of relevant brain cell types, and fly models of AD, we will reconstitute the AD-related networks discovered in the multi-scale analysis in these living systems and then employ high-throughput molecular and cellular screening assays to not only validate the actions of individual genes on molecular and cellular AD-associated processes, but also to validate the molecular networks predicted to drive AD.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Program Officer
Petanceska, Suzana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
Schools of Medicine
New York
United States
Zip Code
Yang, Jialiang; Huang, Tao; Song, Won-Min et al. (2016) Discover the network mechanisms underlying the connections between aging and age-related diseases. Sci Rep 6:32566
Long, Quan; Argmann, Carmen; Houten, Sander M et al. (2016) Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Med 8:15
Knight, Elysse M; Ruiz, Henry H; Kim, Soong Ho et al. (2016) Unexpected partial correction of metabolic and behavioral phenotypes of Alzheimer's APP/PSEN1 mice by gene targeting of diabetes/Alzheimer's-related Sorcs1. Acta Neuropathol Commun 4:16
Zhao, Yongzhong; Forst, Christian V; Sayegh, Camil E et al. (2016) Molecular and genetic inflammation networks in major human diseases. Mol Biosyst 12:2318-41
Petralia, Francesca; Song, Won-Min; Tu, Zhidong et al. (2016) New Method for Joint Network Analysis Reveals Common and Different Coexpression Patterns among Genes and Proteins in Breast Cancer. J Proteome Res 15:743-54
Cohain, Ariella; Divaraniya, Aparna A; Zhu, Kuixi et al. (2016) EXPLORING THE REPRODUCIBILITY OF PROBABILISTIC CAUSAL MOLECULAR NETWORK MODELS. Pac Symp Biocomput 22:120-131
Argmann, Carmen A; Houten, Sander M; Zhu, Jun et al. (2016) A Next Generation Multiscale View of Inborn Errors of Metabolism. Cell Metab 23:13-26
Readhead, B; Haure-Mirande, J-V; Zhang, B et al. (2016) Molecular systems evaluation of oligomerogenic APP(E693Q) and fibrillogenic APP(KM670/671NL)/PSEN1(Δexon9) mouse models identifies shared features with human Alzheimer's brain molecular pathology. Mol Psychiatry 21:1153-4
Sanderson, Saskia C; Linderman, Michael D; Suckiel, Sabrina A et al. (2016) Motivations, concerns and preferences of personal genome sequencing research participants: Baseline findings from the HealthSeq project. Eur J Hum Genet 24:14-20
Ando, Kanae; Oka, Mikiko; Ohtake, Yosuke et al. (2016) Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated. Biochem Biophys Res Commun 478:929-34

Showing the most recent 10 out of 36 publications