The human airway is a complex immune organ, reflecting its central role in the host response to airborne infection. Innate T cells found within the airway have the potential to play a critical role in the recognition of these pathogens, in their control, and in the acquisition of adaptive immunity. Human mucosal associated invariant T (MAIT) cells are a unique T cell population found in all humans that are characterized by the use of a semi-invariant T cell receptor (TCR;Va7.2), dependence on the non-classical (HLA-lb) molecule MRI, and their rapid effector function. We have recently found MAIT cells to be capable of the recognition of bacterially-infected epithelial cells, and to be highly enriched in the human airway and lung parenchyma. Furthermore, in an analysis of the role of MAIT cells in those infected with Mycobacterium tuberculosis (Mtb), we found these cells to be virtually absent in those with active but not latent tuberculosis. As a result, the location of MAIT cells in the human airway, in conjunction with their ability to rapidly respond to bacterially infected epithelial cells positions these cells to play a critical role in the control of intracellular infection.
The specific aims of this proposal are designed to delineate the role of these cells in the human host response to airborne infection. First, while we have found that MRI-restricted MAIT cells are capable of recognizing a broad array of pathogens, the diversity of ligand and/or pathogen recognition is not known. As a result, in the first aim the full spectrum of pathogens recognized by MAIT cells will be characterized with regard to TCR usage. Second, we have found that human primary lung epithelial cells can produce INOS both in response to IFN-gamma as well as direct T cell contact. Consequently, in the second aim we will determine the contribution of MAIT cells to the production of epithelial iNOS and consequent bacterial control. Finally, in our analysis of human airway immune cells, we have observed the presence of MAIT cells in the absence of DC. Consequently, we postulate that one function of MAIT cells is to """"""""license"""""""" lung epithelial cells resulting in the recruitment and maturation of DC.
The third aim will determine the relationship of MAIT cells with airway epithelium and dendritic cells. PUBLIC HEALH

Public Health Relevance

(from applicant): Airborne Infections due to intracellular bacteria are a frequent and severe cause of morbidity and mortality worldwide. The airway contains a number of immune effector cells, yet their role in the recognition and control of intracellular bacteria is poorly understood. This application will focus on an innate class of T cells termed mucosal associated invariant T cells (MAIT) that are highly enriched in the human airway.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-WFD-I (M2))
Program Officer
Rothermel, Annette L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Meermeier, Erin W; Laugel, Bruno F; Sewell, Andrew K et al. (2016) Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens. Nat Commun 7:12506
Harriff, Melanie J; Karamooz, Elham; Burr, Ansen et al. (2016) Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells. PLoS Pathog 12:e1005524
Santhanam, Srikanth; Alvarado, David M; Ciorba, Matthew A (2016) Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res 167:67-79
Kuhlmann, F Matthew; Santhanam, Srikanth; Kumar, Pardeep et al. (2016) Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera. Am J Trop Med Hyg 95:440-3
Huang, Bihui; Yin, Mingzhu; Li, Xia et al. (2016) Migration-inducing gene 7 promotes tumorigenesis and angiogenesis and independently predicts poor prognosis of epithelial ovarian cancer. Oncotarget 7:27552-66
Gold, Marielle C; Napier, Ruth J; Lewinsohn, David M (2015) MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264:154-66
Faucette, Azure N; Unger, Benjamin L; Gonik, Bernard et al. (2015) Maternal vaccination: moving the science forward. Hum Reprod Update 21:119-35
O'Brien, Valerie P; Hannan, Thomas J; Schaeffer, Anthony J et al. (2015) Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection. Curr Opin Infect Dis 28:97-105
Erickson, Nancy A; Nyström, Elisabeth E L; Mundhenk, Lars et al. (2015) The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 10:e0131991
Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne et al. (2015) CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice. Am J Physiol Gastrointest Liver Physiol 309:G874-87

Showing the most recent 10 out of 31 publications