The goal of this proposal is to improve cancer clinical trials by enhancing the effectiveness of quantitative PET/CT imaging of tumor response. This has three distinct and linked components;(1) measuring and reducing the bias and variance of multi-center quantitative PET/CT imaging measurements, (2) devising optimal PET image analysis methods appropriate for quantitative PET/CT imaging in clinical trials, and (3) developing and testing guidelines for incorporating quantitative PET/CT imaging as a biomarker and measure of response in cancer clinical trial design. Underlying themes include optimizing the clinical and biologic data that can be gleaned from imaging in the setting of cancer therapy clinical trials, matching the design of the imaging components to the phase and complexity of the cancer clinical therapy trial, and matching the imaging approach to the type of tumor and the therapeutic agent. The mechanism used in the proposal is the development and testing of methods in tandem with existing clinical cancer trials that include PET imaging. This includes imaging studies performed locally at the University of Washington, in small multi-center trials as part of a regional network directed by our cancer center, and as a participant in national multi-center trials. The focus is on early drug trials (Phase I and II studies) and imaging biomarker studies;however, the methods investigated and tools developed will be equally applicable to larger (Phase III) trials and imaging as a surrogate endpoint. The combined results from all three aims will enable clinical investigators, cooperative cancer trial groups, and pharma, to optimize the use of PET imaging in cancer clinical trials and to include considerations for quantitative PET imaging markers in choosing a study design and sample size.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (J1))
Program Officer
Nordstrom, Robert J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
MacDonald, Lawrence R; Perkins, Amy E; Tung, Chi-Hua (2017) Longitudinal monitoring of reconstructed activity concentration on a clinical time-of-flight PET/CT scanner. J Med Imaging (Bellingham) 4:011004
Rosen, Mark; Kinahan, Paul E; Gimpel, James F et al. (2017) Performance Observations of Scanner Qualification of NCI-Designated Cancer Centers: Results From the Centers of Quantitative Imaging Excellence (CQIE) Program. Acad Radiol 24:232-245
Hatt, Mathieu; Tixier, Florent; Pierce, Larry et al. (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44:151-165
Kurland, Brenda F; Peterson, Lanell M; Lee, Jean H et al. (2017) Estrogen Receptor Binding (18F-FES PET) and Glycolytic Activity (18F-FDG PET) Predict Progression-Free Survival on Endocrine Therapy in Patients with ER+ Breast Cancer. Clin Cancer Res 23:407-415
Wangerin, Kristen A; Ahn, Sangtae; Wollenweber, Scott et al. (2017) Evaluation of lesion detectability in positron emission tomography when using a convergent penalized likelihood image reconstruction method. J Med Imaging (Bellingham) 4:011002
Wangerin, Kristen A; Muzi, Mark; Peterson, Lanell M et al. (2017) A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy. Phys Med Biol 62:3639-3655
Pantel, Austin R; Mankoff, David A (2017) Molecular imaging to guide systemic cancer therapy: Illustrative examples of PET imaging cancer biomarkers. Cancer Lett 387:25-31
Byrd, Darrin W; Doot, Robert K; Allberg, Keith C et al. (2016) Evaluation of Cross-Calibrated 68Ge/68Ga Phantoms for Assessing PET/CT Measurement Bias in Oncology Imaging for Single- and Multicenter Trials. Tomography 2:353-360
Kurland, Brenda F; Muzi, Mark; Peterson, Lanell M et al. (2016) Multicenter Clinical Trials Using 18F-FDG PET to Measure Early Response to Oncologic Therapy: Effects of Injection-to-Acquisition Time Variability on Required Sample Size. J Nucl Med 57:226-30
Mankoff, David A; Edmonds, Christine E; Farwell, Michael D et al. (2016) Development of Companion Diagnostics. Semin Nucl Med 46:47-56

Showing the most recent 10 out of 48 publications