This project is to organize an interdisciplinary team to work on RNA nanotechnology by constructing polyvalent RNA nanoparticles for specific targeting and delivery to cancer cells. RNA molecules can down-regulate specific gene expression in cancer cells. RNA is particularly attractive as a building block for bottom-up assembly in nanotechnology and nanomedicine. RNA can be manipulated as easily as DNA, but possesses the versatility in structure and function similar to that of proteins. RNA contains single-stranded stem-loops for intra- or inter-RNA interactions which can serve as mounting dovetails, providing advantages over external linking dowels in nanomachine assembly. This CNPP operation comprises of three major functions: the fundamental studies on therapeutic RNA nanoparticle construction;the conjugation and incorporation of therapeutic and targeting moieties to RNA nanoparticles;and the specific delivery of therapeutics to cancer cells. The team includes basic scientists with strong backgrounds in biomedical engineering, chemistry, and RNA and DNA nanotechnology;cancer biologists with extensive experience in ribozyme and siRNA delivery;and pharmaceutical cooperation focusing on RNA therapeutics with expertise in animal trials. The team will elucidate the principles underlying the RNA/RNA interactions in RNA nanoparticle assembly using phi29 motor pRNA system and RNA junction motifs to build polyvalent RNA oligomers containing aptamer, siRNA, ribozyme, ligand, imaging markers or drugs for cancer cell recognition and gene silencing. A new methodology of SELEX will be developed to screen for stable and high affinity RNA aptamers that target and enter cancer cells specifically. Simultaneous delivery and detection will be designed, combining therapy and detection of subsequent therapeutic effects on apoptosis. Approaches of crossover, chemical modification, and cross-linking will be applied to make RNA nanoparticles stable in vivo. Novel fermentation approaches and industry scale production methods will be developed to produce large-scale stable RNA for clinical applications. Animal trials on pharmacokinetics, bio-distribution, toxicity, gene silencing effects, and cancer cell killing will be carried out on animal models of lung cancer, ovarian cancer, liver cancer, and leukemia.

Public Health Relevance

Cancer is a current and long term health care crisis and treatments necessitate the investigation of specific delivery to target cells. This application proposes to fabricate RNA nanoparticles to incorporate therapeutic SiRNA, aptamers, and ribosomes to accomplish targeted delivery. Therapeutic constituents will be selected for the treatment of lung cancer, ovarian cancer, liver cancer, and leukemia.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-X (M1))
Program Officer
Morris, Stephanie A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
Schools of Pharmacy
United States
Zip Code
Guo, Peixuan (2014) Biophysical studies reveal new evidence for one-way revolution mechanism of bacteriophage ?29 DNA packaging motor. Biophys J 106:1837-8
Khisamutdinov, Emil F; Jasinski, Daniel L; Guo, Peixuan (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771-81
Khisamutdinov, Emil F; Li, Hui; Jasinski, Daniel L et al. (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 42:9996-10004
Shu, Dan; Khisamutdinov, Emil F; Zhang, Le et al. (2014) Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor. Nucleic Acids Res 42:e10
Feng, Liang; Li, S Kevin; Liu, Hongshan et al. (2014) Ocular delivery of pRNA nanoparticles: distribution and clearance after subconjunctival injection. Pharm Res 31:1046-58
Zhang, Hui; Guo, Peixuan (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67:169-76
Binzel, Daniel W; Khisamutdinov, Emil F; Guo, Peixuan (2014) Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 53:2221-31
Jasinski, Daniel L; Khisamutdinov, Emil F; Lyubchenko, Yuri L et al. (2014) Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 8:7620-9
Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie et al. (2014) Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 32:853-72
Shu, Yi; Pi, Fengmei; Sharma, Ashwani et al. (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66:74-89

Showing the most recent 10 out of 26 publications