The emergence of multidimensional datasets characterizing genetic, epigenetic, and functional properties of large normal and tumor-related samples is creating unique opportunities for the systems-level dissection of mechanisms associated with malignant phenotypes. Coupled with novel high-throughput technologies and computational methodologies for the dissection, interrogation, and perturbation of genome-wide regulatory pathways, this will lead to highly efficient approaches for the rapid identification and validation of therapeutic targets, their small molecule inhibitors, and associated biomarkers. Columbia University investigators have pioneered systems-biology-based approaches for the dissection of regulatory networks in human malignancies and for their interrogation, using computational, RNAi, and small-molecule approaches, to identify molecular targets for therapeutic intervention. The goal of this project is the use and build upon a successful pipeline between the investigators labs for the discovery and validation of master regulator modules that implement functional bottlenecks that integrate aberrant signals from multiple genetic and epigenetic alterations, and thus, constitute natural dependencies (i.e., Achille's heel) for the tumor subtype. These will be characterized in terms of their synergistic behavior, driver genetic alterations, and druggable modulators. This pipeline will allow processing of a novel tumor phenotype every 18 to 24 months, yielding validated individual and synergistic targets that constitute either oncogene or non-oncogene dependencies of the tumor or that increase sensitivity to existing FDA approved or late-stage development compounds. Relevance: The identification of targets that abrogate tumorigenesis in the patient, are extensively biochemically characterized, chemically tractable, and highly penetrant constitutes one of the greatest challenges of cancer research. The goal of this proposal is to leverage an integrative computational and experimental pipeline for the systematic identification of novel potential targets that may inspire future development of therapeutic applications.

Public Health Relevance

The identification of targets that abrogate tumorigenesis in the patient, are extensively biochemically characterized, chemically tractable, and highly penetrant constitutes one of the greatest challenges of cancer research. By interrogating multidimensional datasets characterizing genetic, epigenetic, and functional properties of large normal and tumor-related samples, it is the aim of this proposal to leverage an integrative computational and experimental pipeline for the systematic identification of novel targets that may inspire future development of therapeutic applications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01CA168426-01
Application #
8323749
Study Section
Special Emphasis Panel (ZCA1-SRLB-V (J1))
Program Officer
Gerhard, Daniela
Project Start
2012-06-01
Project End
2017-04-30
Budget Start
2012-06-01
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$1,211,593
Indirect Cost
$413,630
Name
Columbia University (N.Y.)
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Bisikirska, Brygida; Bansal, Mukesh; Shen, Yao et al. (2016) Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression. Cancer Res 76:664-74
Cancer Target Discovery and Development Network (2016) Transforming Big Data into Cancer-Relevant Insight: An Initial, Multi-Tier Approach to Assess Reproducibility and Relevance. Mol Cancer Res 14:675-82
Westphalen, C Benedikt; Takemoto, Yoshihiro; Tanaka, Takayuki et al. (2016) Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell 18:441-55
Yu, Jiyang; Silva, Jose; Califano, Andrea (2016) ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics 32:260-7
Alvarez, Mariano J; Shen, Yao; Giorgi, Federico M et al. (2016) Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 48:838-47
Mitrofanova, Antonina; Aytes, Alvaro; Zou, Min et al. (2015) Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models. Cell Rep 12:2060-71
Woo, Jung Hoon; Shimoni, Yishai; Yang, Wan Seok et al. (2015) Elucidating Compound Mechanism of Action by Network Perturbation Analysis. Cell 162:441-51
Aytes, Alvaro; Mitrofanova, Antonina; Lefebvre, Celine et al. (2014) Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell 25:638-51
Chudnovsky, Yakov; Kim, Dohoon; Zheng, Siyuan et al. (2014) ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state. Cell Rep 6:313-24
Giorgi, Federico M; Lopez, Gonzalo; Woo, Jung H et al. (2014) Inferring protein modulation from gene expression data using conditional mutual information. PLoS One 9:e109569

Showing the most recent 10 out of 16 publications