Most human tumors, particularly those derived from epithelial cancers, exhibit global genomic alterations that make it difficult to identify mutations critical for cell transformation and to define the consequences of specific cancer associated mutations. Recent advances in sequencing technologies and comprehensive methods to map cancer-associated amplicons and deletions now make it possible to identify all of the genetic alterations harbored by a particular tumor, and large-scale efforts such as TCGA to apply these technologies have already begun to provide comprehensive views of cancer genomes. Despite these important advances, a critical bottleneck in translating these discoveries into therapies that will enter the clinic remais the functional characterization of genes as potential therapeutic targets. Specifically, although the identification of genes that are mutated in a substantial fraction of particular cancer types is an essential first step, the parallel development of efficient methods to annotate the function of cancer-associated genes is necessary to distill promising candidate cancer targets from this structural description of cancer genomes. Thus, functional annotation of cancer genes will identify those genes whose protein products are essential for tumor initiation or maintenance and will provide critical insights into the biochemical pathways that ar dysregulated in these same cancers. This information will accelerate the development of new molecularly targeted therapeutics. In this application, we propose use these studies as a foundation to establish the Dana- Farber Cancer Institute Cancer Target Discovery and Development Center. This Center will focus on the use of high throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in three cancers (GBM, ovarian, and colon) in vitro and in vivo. We will make the outputs of these studies (data and methodologies) freely available to the scientific community and intend to participate in CTDD Network projects throughout the time frame of this project. We anticipate that this Center will provide the cancer research community with information tht will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies and facilitate the translation of this information into therapeutics and diagnostis.

Public Health Relevance

The overarching goals of these studies are the implementation of high throughput technologies that will provide functional information for genes identified as mutated or amplified in glioblastoma, ovarian, colon and pancreatic cancers and the dissemination of this information and validated reagents to the cancer research community. The cancer genes identified using these approaches represent prioritized candidates for investigator-initiated research programs and targets of particular promise for future therapeutic efforts. These studies will leverage prior investments in cancer genome characterization and provide outputs that will facilitate investigator-initiated baic and translational studies and accelerate the development of new therapeutic approaches.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-R (J1))
Program Officer
Gerhard, Daniela
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Takeda, David Y; Spisák, Sándor; Seo, Ji-Heui et al. (2018) A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell 174:422-432.e13
Giacomelli, Andrew O; Yang, Xiaoping; Lintner, Robert E et al. (2018) Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 50:1381-1387
Qian, Zhi Rong; Rubinson, Douglas A; Nowak, Jonathan A et al. (2018) Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncol 4:e173420
Sandoval, Gabriel J; Pulice, John L; Pakula, Hubert et al. (2018) Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis. Mol Cell 71:554-566.e7
Aguirre, Andrew J; Nowak, Jonathan A; Camarda, Nicholas D et al. (2018) Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discov 8:1096-1111
Chen, Liying; Alexe, Gabriela; Dharia, Neekesh V et al. (2018) CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 128:446-462
Pan, Joshua; Meyers, Robin M; Michel, Brittany C et al. (2018) Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. Cell Syst 6:555-568.e7
Lo, Justin H; Hao, Liangliang; Muzumdar, Mandar D et al. (2018) iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Mol Cancer Ther 17:2377-2388
Gannon, Hugh S; Zou, Tao; Kiessling, Michael K et al. (2018) Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat Commun 9:5450
Viswanathan, Srinivas R; Nogueira, Marina F; Buss, Colin G et al. (2018) Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nat Genet 50:937-943

Showing the most recent 10 out of 57 publications