Type 2 diabetes (T2D) is characterized by insulin resistance and a relative deficiency of insulin secretion. T2D affects ~300 million people worldwide, >25 million in the US alone. 27% of Americans aged e60y suffer from T2D. T2D incidence and prevalence are increasing rapidly. In the US alone, medical costs of diabetes in 2012 were estimated at $176 billion, ~10% of US health care costs. The increasing number of younger T2D cases amplifies the socioeconomic impact of T2D and increases the urgency with which we must act to identify causes and new treatments. The goal of the Finland-United States Investigation of NIDDM Genetics (FUSION) study is to identify genetic variants that predispose to T2D and that are responsible for variability in T2D-related QTs. Improved understanding of the genetic basis of T2D and related QTs has the potential to reduce the impact of the T2D epidemic by supporting identification of novel drugs and therapies, enabling better targeting of drugs and therapies, and providing more accurate T2D risk prediction. In this proposal, we propose to (1) discover genetic loci and variants that influence T2D risk and variability in T2D-related QTs using association studies based on GWAS and sequence data with increasing emphasis on low-frequency and rare variants; (2) identify muscle and adipose tissue regulatory elements that increase risk of T2D and contribute to variation in related QTs by molecularly characterizing muscle and adipose biopsy samples from 324 individuals from across the glucose tolerance spectrum; and (3) identify the likely causal genes (and other functional units) and disease mechanisms at known T2D and QT loci through genotype-based callback detailed phenotyping in appropriately consented individuals with likely high-impact variants and in non-carrier controls. These efforts will contribute to improved understanding of the etiology of T2D, and have the potential to point the way to novel methods of treatment and prevention. Methods developed and lessons learned in the FUSION study will be useful in the study of other complex genetic diseases.

Public Health Relevance

The rising prevalence of type 2 diabetes in the US and worldwide represents one of the major challenges to public health, and improved options for treatment and prevention are required. The present proposal builds on a longstanding and productive collaboration between researchers in the USA and Finland to understand the genetic basis of type 2 diabetes, and to use this information to reveal disease mechanisms. In this proposal, we will continue to identify genetic loci that influence risk to type 2 diabetes and variability in diabetes-related quantitative traits, and increasingly focus on identifying the causl variants, genes and other functional units, and the mechanisms by which they act.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01DK062370-14
Application #
9270015
Study Section
Special Emphasis Panel (ZRG1-PSE-C (90)S)
Program Officer
Blondel, Olivier
Project Start
2002-07-01
Project End
2018-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
14
Fiscal Year
2017
Total Cost
$715,718
Indirect Cost
$218,882
Name
University of Michigan Ann Arbor
Department
Type
Schools of Public Health
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang et al. (2017) Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 8:80
Varshney, Arushi; Scott, Laura J; Welch, Ryan P et al. (2017) Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 114:2301-2306
Civelek, Mete; Wu, Ying; Pan, Calvin et al. (2017) Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. Am J Hum Genet 100:428-443
Manning, Alisa (see original citation for additional authors) (2017) A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes 66:2019-2032
Roman, Tamara S; Cannon, Maren E; Vadlamudi, Swarooparani et al. (2017) A Type 2 Diabetes-Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus. Diabetes 66:2521-2530
Estes, Jason P; Rice, John D; Li, Shi et al. (2017) Meta-analysis of gene-environment interaction exploiting gene-environment independence across multiple case-control studies. Stat Med 36:3895-3909
Kraja, Aldi T; Cook, James P; Warren, Helen R et al. (2017) New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475?000 Individuals. Circ Cardiovasc Genet 10:
Scott, Robert A; Scott, Laura J; M├Ągi, Reedik et al. (2017) An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 66:2888-2902
Cannon, Maren E; Duan, Qing; Wu, Ying et al. (2017) Trans-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus. G3 (Bethesda) 7:3217-3227
Beck, Andrew; Luedtke, Alexander; Liu, Keli et al. (2017) A POWERFUL METHOD FOR INCLUDING GENOTYPE UNCERTAINTY IN TESTS OF HARDY-WEINBERG EQUILIBRIUM. Pac Symp Biocomput 22:368-379

Showing the most recent 10 out of 101 publications