Type 2 diabetes (T2D) is a major cause of morbidity and mortality in the USA and worldwide. While T2D prevalence varies with age, sex, and population, it is estimated that in 2005, >20 million Americans suffered from T2D. The incidence and prevalence of T2D are increasing in the USA and worldwide. It is estimated that in the USA alone, medical expenditures due to diabetes totaled $132 billion in 2002, ~10% of all USA health care costs. There is substantial evidence of a genetic component in the etiology of T2D. The last three years have seen remarkable progress in our understanding of this genetic component, particularly in European-origin populations, with ~20 T2D loci now robustly confirmed. Despite these successes, much remains to be done as we seek to identify the causative variants at these loci, assess their relevance in non- European populations, and identify additional T2D variants in all ancestry groups. In this application, we seek to clarify further the complex genetic basis of T2D by participating in a cooperative study based on RFA-DK- 09-004: Multiethnic Study of Type 2 Diabetes Genes. We bring to this effort (a) a highly productive, well integrated team of researchers with a wealth of experience in all aspects of diabetes genetics research and particular expertise in statistical genetics, (b) demonstrated leadership in large-scale genetic studies including recent genome-wide association studies of T2D and related traits, (c) access to large, well- characterized samples of T2D cases and controls and cohorts representing European, Hispanic, and East Asian populations, and (d) strong collaborative relationships with multiple other T2D research groups. In this proposal, we seek to build on our recent successes to further our understanding of T2D genetics by gathering together DNA samples and phenotype data across the available cohorts, playing a key role in the analysis of sequence trace data, and carrying out fine mapping, re-sequencing, and follow up to identify T2D causative variants. Our efforts for this RFA will improve our understanding of T2D etiology, and have the potential to point the way to novel methods of prevention and treatment. Methods developed and lessons learned in this study will be useful in studies of other common diseases.

Public Health Relevance

Type 2 diabetes is a major cause of morbidity and mortality in the USA and worldwide, and its frequency and impact are increasing rapidly. Improved understanding of the genetic basis of type 2 diabetes has the potential to reduce the impact of the diabetes epidemic by supporting identification of novel drugs and therapies, enabling better targeting of preventive and therapeutic approaches, and providing more accurate risk prediction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01DK085584-04
Application #
8322013
Study Section
Special Emphasis Panel (ZDK1-GRB-G (O2))
Program Officer
Akolkar, Beena
Project Start
2009-09-20
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$805,958
Indirect Cost
$429,588
Name
University of Michigan Ann Arbor
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Conomos, Matthew P; Reiner, Alexander P; Weir, Bruce S et al. (2016) Model-free Estimation of Recent Genetic Relatedness. Am J Hum Genet 98:127-48
Lee, Sungyoung; Choi, Sungkyoung; Kim, Young Jin et al. (2016) Pathway-based approach using hierarchical components of collapsed rare variants. Bioinformatics 32:i586-i594
Thompson, Katherine L; Fardo, David W (2016) Comparing performance of non-tree-based and tree-based association mapping methods. BMC Proc 10:405-410
Engelman, Corinne D; Greenwood, Celia M T; Bailey, Julia N et al. (2016) Genetic Analysis Workshop 19: methods and strategies for analyzing human sequence and gene expression data in extended families and unrelated individuals. BMC Proc 10:67-70
Nicholson, Alexandra M; Finch, NiCole A; Almeida, Marcio et al. (2016) Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun 7:11992
Zhu, Huanhuan; Wang, Zhenchuan; Wang, Xuexia et al. (2016) A novel statistical method for rare-variant association studies in general pedigrees. BMC Proc 10:193-196
Gallaugher, Michael; Canty, Angelo J; Paterson, Andrew D (2016) Factors associated with heterogeneity in microarray gene expression in peripheral blood mononuclear cells from large pedigrees. BMC Proc 10:91-95
Green, Alden; Cook, Kaitlyn; Grinde, Kelsey et al. (2016) A general method for combining different family-based rare-variant tests of association to improve power and robustness of a wide range of genetic architectures. BMC Proc 10:165-170
Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W et al. (2016) Filtering genetic variants and placing informative priors based on putative biological function. BMC Genet 17 Suppl 2:8
Datta, Ananda S; Biswas, Swati (2016) Comparison of haplotype-based statistical tests for disease association with rare and common variants. Brief Bioinform 17:657-71

Showing the most recent 10 out of 46 publications