Bisphenol-A (4,4'isopropylidenediphenol, BPA) is one ofthe world's highest-volunne chemicals in production today. However, the safety of BPA at current levels of human exposures is intensely debated. BPA Is best known as a weak estrogen, but it binds to the thyroid hormone (TH) receptor (TR) with affinity characteristics that are similar to those of the estrogen receptor (ER). Our preliminary data indicate that BPA inhibits TH negative feedback, driven by the beta TR, causing an increase in serum thyroxine. However, the TH-response gene RC3/Neurogranin, driven by the alpha TR in the developing brain, becomes inappropriately elevated suggesting that BPA is a selective antagonist on the beta TR. Considering the importance of TH signaling during development and In the adult, we propose to collaborate with NTP/NCTR scientists to evaluate the ability of BPA to interfere with TH signaling during the life cycle and to characterize potential adverse effects that remain into adulthood. We propose three specific aims to accomplish these goals.
Aim 1 is focused on testing the ability of BPA exposure to interfere with TH signaling in the fetus prior to the onset of fetal thyroid function and in the neonate during the period of peak sensitivity to serum TH. We will evaluate the effect of BPA on serum and tissue TH, TH-regulated gene expression, and TH-dependent development. This will be followed by a focused experiment in a transgenic mouse line to test whether BPA alters the delivery of biologically active T3 to target cells.
Aim 2 is focused on testing the ability of BPA to interfere with TH signaling in the adult. We will evaluate whether developmental BPA exposure produces permanent effects on brain structure and function, and whether current BPA exposure interferes with TH signaling In brain, pituitary, liver and heart.
Aim 3 takes a toxicogenomics approach in collaboration with scientists at Health Canada to determine the degree to which BPA exposure affects TH signaling compared to signaling through the estrogen receptor, and will test whether specific effects that we characterize in Aims 1 and 2 are dependent upon the expression of TRa or TR|3 using well known knock-out mouse models.

Public Health Relevance

The U.S. population exhibits widespread exposure to bisphenol-A (BPA). The ability of BPA to interfere with thyroid hormone signaling in development and in the adult is concerning because thyroid hormone is essential for normal brain development and adult physiology. We propose to comprehensively test whether BPA interferes with TH signaling in development and in the adult.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01ES020908-03
Application #
8478103
Study Section
Special Emphasis Panel (ZES1-JAB-J (BP))
Program Officer
Heindel, Jerrold
Project Start
2011-09-19
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$20,233
Indirect Cost
$7,508
Name
University of Massachusetts Amherst
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
153926712
City
Amherst
State
MA
Country
United States
Zip Code
01003
Gore, A C; Chappell, V A; Fenton, S E et al. (2015) EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 36:E1-E150