Cell adhesion complexes are a bio-medically important class of multi-protein assemblies. They are involved in sensing Interactions between cells and their external environment, and then initiating and regulating intracellular signals that control cell migration, cell shape and functional organization, proliferation and survival, and gene expression. They are evolutionarily old, critical for normal development and homeostasis, and are defective in genetic diseases and cancer. Currently, there is a lack of a concerted effort to integrate available genomic (evolutionary) and structural information to rigorously solve the hierarchical structural organization of these multi-protein complexes at the atomic, meso and macro scale. A further barrier to progress is the availability of large amounts of purified proteins for multi-protein complex reconstitution since classical approaches are not feasible due to the unstable nature of complex protein assemblies. The Consortium will leverage high-throughput expression and structures of large sets of target families of proteins and signaling networks to understand the structural and functional organization of both cell-cell and cell-ECM adhesion complexes. The Consortium will integrate expertise in structural biology (X-ray crystallography, electron microscopy of in situ complexes), biochemistry and cell biology (in vitro reconstitution), chemistry and live cell imaging (in situ bio-sensors and caged proteins) by:
Specific Aim 1 : Define multi-protein interactions, stoichiometries and affinities in solution (Liddington, Weis).
Specific Aim 2 : Reconstitute multi-protein complexes on biological membranes (Ginsberg, Nelson).
Specific Aim 3 : Define structures of multi-protein complexes in situ, at a physiological environment (Hanein, Volkmann).
Specific Aim 4 : Analyze dynamic protein-protein interactions and assembly in live cells (Hahn).

Public Health Relevance

This is a critical area of Human Health. Cell adhesion complexes are important in all aspects of normal cell and tissue function, and are commonly defective in genetic diseases and cancers. Results will provide new understanding of how defects disrupt normal function and contribute to disease, and potentially identify new therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01GM094663-04S1
Application #
8814966
Study Section
Special Emphasis Panel (ZGM1-CBB-0 (BC))
Program Officer
Ainsztein, Alexandra M
Project Start
2010-09-30
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2014
Total Cost
$74,945
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Buckley, Craig D; Tan, Jiongyi; Anderson, Karen L et al. (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:1254211
Karginov, Andrei V; Tsygankov, Denis; Berginski, Matthew et al. (2014) Dissecting motility signaling through activation of specific Src-effector complexes. Nat Chem Biol 10:286-90
Chu, Pei-Hsuan; Tsygankov, Denis; Berginski, Matthew E et al. (2014) Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms. Proc Natl Acad Sci U S A 111:12420-5
Goult, Benjamin T; Xu, Xiao-Ping; Gingras, Alexandre R et al. (2013) Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation. J Struct Biol 184:21-32
Gingras, Alexandre R; Puzon-McLaughlin, Wilma; Ginsberg, Mark H (2013) The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem 288:23639-49
Miller, Phillip W; Clarke, Donald N; Weis, William I et al. (2013) The evolutionary origin of epithelial cell-cell adhesion mechanisms. Curr Top Membr 72:267-311
Konze, Kyle D; Ma, Anqi; Li, Fengling et al. (2013) An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chem Biol 8:1324-34
Dagliyan, Onur; Shirvanyants, David; Karginov, Andrei V et al. (2013) Rational design of a ligand-controlled protein conformational switch. Proc Natl Acad Sci U S A 110:6800-4
MacNevin, Christopher J; Gremyachinskiy, Dmitriy; Hsu, Chia-Wen et al. (2013) Environment-sensing merocyanine dyes for live cell imaging applications. Bioconjug Chem 24:215-23
Miller, Phillip W; Pokutta, Sabine; Ghosh, Agnidipta et al. (2013) Danio rerio *E-catenin is a monomeric F-actin binding protein with distinct properties from Mus musculus *E-catenin. J Biol Chem 288:22324-32

Showing the most recent 10 out of 11 publications