Congenital heart defects (CHDs) are among the most common and most devastating birth defects in humans. Networks of transcription factors regulate cardiac cell fate and morphogenesis, and dominant mutations in transcription factor genes lead to most instances of inherited CHD. The mechanisms underlying CHDs that result from disruption of these networks remain to be identified, but regulation of gene expression within a relatively narrow developmental window is clearly essential for normal cardiac morphogenesis. In addition to transcription factors, epigenetic regulation via histone modifications, chromatin remodeling, and non-coding RNAs have key roles in modulating gene expression programs. Elucidating on a genome scale the physical and functional interactions between transcription factors and epigenetic regulators will considerably enhance our understanding of the control of heart development and will have important implications for understanding the mechanistic basis of CHDs. We propose a project as part of the NHLBI Heart Development consortium to provide an integrated epigenetic landscape for heart development, with a focus on CHD-related genes. We propose three major aims.
Aim 1 : Define genome-wide occupancy maps of transcription factors with known roles in cardiac development and human disease, and epigenetic regulators of transcription, in differentiating cardiomyocytes.
Aim 2 : Define the global function of transcriptional and epigenetic regulation in heart development and congenital heart disease. We will examine the effect of loss of function of cardiac transcription factors on epigenetic regulation, and alterations in epigenetic regulation in disease-specific induced pluripotent cells from CHD patients. We will also evaluate the global role of histone modifications in mouse heart development.
Aim 3; Integrate microRNA expression and function into the regulatory networks governing cardiac development. High-resolution occupancy maps from Aims 1 and 2 will be analyzed specifically for miRNA promoter occupancy and combined with quantitative sequencing of miRNAs in differentiating cardiomyocytes. We will study the function of highly altered miRNAs, specifically those that target disease-causing cardiac transcription factors. Our studies will yield an important and transformative epigenetic atlas of heart development, which will link for the first time transcriptional and epigenetic regulators in a comprehensive network that will illuminate mechanisms underlying CHDs.

Public Health Relevance

The proposed project will for the first time allow a new understanding of the gene networks that underlie congenital heart disease. Congenital heart disease is the most serious childhood illness, affecting 1% of children, and leading to significant mortality and long-term illness. However the underlying causes of these diseases are not understood. Our project will link the so-called "epigenetic regulators" that control how genes are turned on or off, to congenital heart disease, bringing new important insights into these diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-B (S1))
Program Officer
Schramm, Charlene A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
J. David Gladstone Institutes
San Francisco
United States
Zip Code
Miyaoka, Yuichiro; Chan, Amanda H; Judge, Luke M et al. (2014) Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods 11:291-3
Ma, Zhen; Koo, Sangmo; Finnegan, Micaela A et al. (2014) Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 35:1367-77
Erwin, Genevieve D; Oksenberg, Nir; Truty, Rebecca M et al. (2014) Integrating diverse datasets improves developmental enhancer prediction. PLoS Comput Biol 10:e1003677
Worringer, Kathleen A; Rand, Tim A; Hayashi, Yohei et al. (2014) The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 14:40-52
Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume et al. (2014) Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature 507:99-103
Spencer, C Ian; Baba, Shiro; Nakamura, Kenta et al. (2014) Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia. Stem Cell Reports 3:269-81
Ang, Yen-Sin; Srivastava, Deepak (2014) Oxygen: double-edged sword in cardiac function and repair. Circ Res 115:824-5
Hu, Hao; Roach, Jared C; Coon, Hilary et al. (2014) A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nat Biotechnol 32:663-9
Oksenberg, N; Haliburton, G D E; Eckalbar, W L et al. (2014) Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes. Transl Psychiatry 4:e431
Dickel, Diane E; Zhu, Yiwen; Nord, Alex S et al. (2014) Function-based identification of mammalian enhancers using site-specific integration. Nat Methods 11:566-71

Showing the most recent 10 out of 21 publications