Marrow transplantation have taught us that hematopoiesis is supported by multipotent hematopoietic stem cells that can maintain or reconstitute the various blood cell lineages throughout life. Despite advances in our understanding of lineage commitment, this has not translated into improved approaches for treating lineage specific cytopenias. The goal of our application is to further our understanding of lineage commitment and use this knowledge to develop molecular interventions that will drive hematopoiesis toward desired lineages both in vitro and in vivo. The application is specifically focused on megakaryopoiesis, because of the clinical importance of post-transplant thrombocytopenia, and to maximize synergy with our UOl partners at Childrens Hospital of Philadelphia. Towards this goal we propose a multifaceted program with 4 Aims, with each aim involving two or more investigators from the FHCRC/UW Consortium.
In Aim 1, Drs Fero, Paddington and Torok-Storb will generate molecular profiles of functionally defined progenitors in the stem cell to platelet pathway from mouse, dog, and man. These three experimental models have complementary strengths that allow for a comprehensive approach including a robust preclinical in vivo model that can predict clinical outcomes.
In Aim 2 these same investigators will gene modify the defined progenitor cells to express lineage-stage-specific reporters for use in a high content, high through put siRNA screening assays to identify changes in the microenvironment that will control progenitor fate.
A third Aim will test the proliferation and differentation potential of distinct progenitor subsets in response to conditionally activated signaling molecules. For this purpose Drs Blau and Emery will use signaling molecule derivatives that can be activated in response to small molecule drugs called chemical inducers of dimerization (CIDs).
In Aim 4, Drs Kiem and Blau will exploit the canine model of thrombocytopenia to test gene products identified in Aim 2, and cell products expanded in Aim 3 to improve the platelet count in vivo. These in vivo studies in the dog model will establish the safety and efficacy of these therapies in a highly relevant preclinical model

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-J (S1))
Program Officer
Thomas, John
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Sullivan, Spencer K; Mills, Jason A; Koukouritaki, Sevasti B et al. (2014) High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood 123:753-7
Kamat, Viraj; Paluru, Prasuna; Myint, Melissa et al. (2014) MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells. Stem Cells 32:1337-46
Iwata, Mineo; Sandstrom, Richard S; Delrow, Jeffrey J et al. (2014) Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes. Stem Cells Dev 23:729-40
Paralkar, Vikram R; Mishra, Tejaswini; Luan, Jing et al. (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123:1927-37
Paluru, Prasuna; Hudock, Kristin M; Cheng, Xin et al. (2014) The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Res 12:441-51
Balakrishnan, Ilango; Yang, Xiaodong; Brown, Joseph et al. (2014) Genome-wide analysis of miRNA-mRNA interactions in marrow stromal cells. Stem Cells 32:662-73
Iwata, Mineo; Torok-Storb, Beverly; Wayner, Elizabeth A et al. (2014) CDCP1 identifies a CD146 negative subset of marrow fibroblasts involved with cytokine production. PLoS One 9:e109304
Iwata, Mineo; Madtes, David K; Abrams, Kraig et al. (2013) Late infusion of cloned marrow fibroblasts stimulates endogenous recovery from radiation-induced lung injury. PLoS One 8:e57179
Harkey, Michael A; Asano, Atsushi; Zoulas, Mary Ellen et al. (2013) Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line. Reproduction 146:75-90
Tsai, Kate L; Starr-Moss, Alison N; Venkataraman, Gopalakrishnan M et al. (2013) Alleles of the major histocompatibility complex play a role in the pathogenesis of pancreatic acinar atrophy in dogs. Immunogenetics 65:501-9

Showing the most recent 10 out of 14 publications