The Stanford-Johns Hopkins Research Hub intends to gain a deeper understanding of molecular pathways to enhance the efficiency of nuclear reprogramming, to ensure the function and safety of induced pluripotential cells (IPSCs), to provide robust protocols for differentiation and purification of hematopoietic and endothelial lineages, and to guide pioneering work in pre-clinical studies of safety and efficacy. The Stanford group proposes three research projects. Project 1: Novel Regulators to enhance IPSC Derivation and Differentiation to EC (Helen Blau, Wing Wong). Using a novel cell fusion approach, we will identify the early epigenetic and transcriptional changes occurring during nuclear reprogramming of the human fibroblast nucleus after cell fusion with mouse ESC. Species-specific transcriptome amplification of the human RNA within the heterokaryon transcripts permits identification of the earliest transcriptional events in the human nucleus during reprogramming. Using the same cell fusion strategy, we will also elucidate the earliest events of directed differentiation toward endothelial cells. In Project 2: IPSC Engineering and Characterization (Renee Reijo Pera, James Swartz) we will develop and refine a protein-based strategy for generating iPSCs. We will synthesize cell-permeant fusion proteins comprising the Yamanaka factors with transduction domains, and optimize their dose, duration and timing to induce optimal reprogramming. Novel factors identified in Project 1 will be incorporated to enhance reprogramming. Comprehensive characterization of the safety and efficacy of these cells will include spectral karyotyping, mitochondrial gene expression and function, and epigenetic, transcriptional and tumorigenic profiling. In Project 3: iPSC-ECs for Therapeutic Angiogenesis: Determinants of Differentiation and Function (John Cooke), we will utilize the IPSC generated in Project 2, and the insights from Project 1 (and our Hopkins colleagues), to efficiently direct differentiation of the IPSC to endothelial lineage. EC function will be assessed in vitro and in vivo, and their therapeutic efficacy studied using molecular imaging and laser Doppler perfusion in a murine model of peripheral arterial disease. We intend that the insights from these projects ultimately lead to novel vascular therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01HL100397-03
Application #
8103947
Study Section
Special Emphasis Panel (ZHL1-CSR-J (S1))
Program Officer
Tolunay, Eser
Project Start
2009-09-30
Project End
2016-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
3
Fiscal Year
2011
Total Cost
$1,188,317
Indirect Cost
Name
Stanford University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Sayed, Nazish; Ospino, Frank; Himmati, Farhan et al. (2017) Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming. Stem Cells 35:1197-1207
Hackett, Sean F; Seidel, Christopher; Abraham, Sheena et al. (2017) The Nicotinic Cholinergic Pathway Contributes to Retinal Neovascularization in a Mouse Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 58:1296-1303
Matrone, Gianfranco; Meng, Shu; Gu, Qilin et al. (2017) Lmo2 (LIM-Domain-Only 2) Modulates Sphk1 (Sphingosine Kinase) and Promotes Endothelial Cell Migration. Arterioscler Thromb Vasc Biol 37:1860-1868
Liu, Shaofeng; Xu, Zhiyun; Leng, He et al. (2017) RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science 355:415-420
Cooke, John P; Leeper, Nicholas J (2017) A Missing LNC in Vascular Diseases. Circ Res 121:320-322
Wong, Wing Tak; Matrone, Gianfranco; Tian, XiaoYu et al. (2017) Discovery of novel determinants of endothelial lineage using chimeric heterokaryons. Elife 6:
Meng, Shu; Chanda, Palas; Thandavarayan, Rajarajan A et al. (2017) Transflammation: Innate immune signaling in nuclear reprogramming. Adv Drug Deliv Rev 120:133-141
Wong, Wing Tak; Cooke, John P (2016) Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng 7:2041731416628329
Molinaro, Roberto; Boada, Christian; Del Rosal, Guillermo Medrano et al. (2016) Vascular Inflammation: A Novel Access Route for Nanomedicine. Methodist Debakey Cardiovasc J 12:169-174
Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy et al. (2016) Targeted delivery of human iPS-ECs overexpressing IL-8 receptors inhibits neointimal and inflammatory responses to vascular injury in the rat. Am J Physiol Heart Circ Physiol 310:H705-15

Showing the most recent 10 out of 147 publications