Over 1 million Americans suffer acute myocardial infarctions each year in the US, and among the survivors, 5 million are afflicted with heart failure. In addition, defects in cell lineage determination or morphogenesis underlie congenital heart malformations, the most common human birth defect. Survivors of congenital heart disease, who number over 1 million in the US, also often suffer from heart failure. Unfortunately, the heart has little regenerative capacity after injury. The recent discovery of human induced pluripotent stem (IPS) cells has opened the door for novel approaches to human disease, including the development of human cellular models for disease mechanisms and drug discovery, along with the potential for autologous cell-based therapies. We propose to assemble a team of investigators at the Gladstone Institutes and Stanford University to develop and capitalize on the potential of IPS cells in the treatment and understanding of heart disease. Methods of IPS generation avoiding genomic integration of DNA are developing rapidly, but continue to require refinement before use of iPS cells in humans;this hurdle will be addressed in this application. As methods for generating IPS cells are improved the team will work together to more efficiently generate iPS-derived cardiac cells for future therapy, capitalizing on their expertise in chromatin remodeling and microRNA (miRNA) biology and G-protein coupled receptor signaling. The team will generate iPS cell lines with fluorescent markers for progressive stages of cardiac differentiation using bacterial artificial chromosome (BAC) strategies. We will also attempt to reprogram somatic cells directly into cardiac progenitors. Survival and engraftment of cells in vivo will be examined in rodents and in large animals through our partners at Stanford. Disease-specific iPS cells will be generated to reveal novel aspects of human progenitor cell biology. This multidisciplinary team will bring broad and critical expertise to the NHLBI Progenitor Cell Consortium in an effort to aggressively capitalize on the promise and potential of iPS cells for heart disease The interaction with the Stanford group within our Hub will synergize and leverage the specific strengths of each group of investigators on the focused effort related to iPS cells.
The specific aims are: 1) To develop integration-free and efficient methods of human IPS cell generation for future cell-based therapies;2) To develop efficient directed differentiation of human IPS cells and methods of direct reprogramming;3). To develop methods to use IPS cell-derived cardiac progenitors in animal models of cardiovascular disease and 4). To use disease-specific IPS cells for discovery of human cardiac progenitor biology and cardiovascular disease mechanisms.

National Institute of Health (NIH)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Buxton, Denis B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
J. David Gladstone Institutes
San Francisco
United States
Zip Code
Miyaoka, Yuichiro; Chan, Amanda H; Judge, Luke M et al. (2014) Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods 11:291-3
Ma, Zhen; Koo, Sangmo; Finnegan, Micaela A et al. (2014) Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 35:1367-77
Worringer, Kathleen A; Rand, Tim A; Hayashi, Yohei et al. (2014) The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 14:40-52
Spencer, C Ian; Baba, Shiro; Nakamura, Kenta et al. (2014) Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia. Stem Cell Reports 3:269-81
Ang, Yen-Sin; Srivastava, Deepak (2014) Oxygen: double-edged sword in cardiac function and repair. Circ Res 115:824-5
Hu, Hao; Roach, Jared C; Coon, Hilary et al. (2014) A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nat Biotechnol 32:663-9
Srivastava, Deepak; Heidersbach, Amy J (2013) Small solutions to big problems: microRNAs for cardiac regeneration. Circ Res 112:1412-4
Srivastava, Deepak; Berry, Emily C (2013) Cardiac reprogramming: from mouse toward man. Curr Opin Genet Dev 23:574-8
Spindler, Matthew J; Burmeister, Brian T; Huang, Yu et al. (2013) AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to *-adrenergic-induced cardiac hypertrophy. PLoS One 8:e62705
Cheng, Paul; Andersen, Peter; Hassel, David et al. (2013) Fibronectin mediates mesendodermal cell fate decisions. Development 140:2587-96

Showing the most recent 10 out of 18 publications