Anti-platelet therapy with clopidogrel (Plavix) and aspirin is the standard of care for secondary prevention of myocardial Infarction. Despite its widespread use, 4 - 32% of Individuals are not responsive to clopidogrel. This renewal application will build upon significant progress made during the initial funding period in which we completed the Amish Pharmacogenomics of Anti-platelet lnterventlon-1 (PAPI-1) Study. Through the first genome-wide association study (GWAS) of its kind, we found that the loss of function cytochrome P450 2C19*2 (CYP2C19*2) variant is a major determinant of clopidogrel response, accounting for 12% of the variation in response. In an Independent cohort, we found that ~30% of the general population harboring CYP2C19*2 have poorer platelet response to clopidogrel and are at a 2.4-fold higher risk of having an ischemic cardiac event or death. The overall goal of this renewal application is to continue to advance the science of anti-platelet pharmacogenomics and its clinical translation. We hypothesize (a) CYP2C19 genotype-directed anti-platelet therapy will be superior to standard of care therapy;and (b) the genetic architecture of clopidogrel response Includes common and rare variants in yet-to-be identified genes. We have amassed a team of multidisciplinary investigators and collaborators and will capitalize on synergies created by active participation in the Pharmacogenomics Research Network to address the following Specific Alms: (1) To conduct the PAPI-2 Study, a prospective multicenter randomized double-blind clinical trial comparing cardiovascular events using CYP2C19 genotype-directed versus standard of care anti-platelet therapy in over 2000 patients with coronary heart disease;(2) To identify common variants in novel genes and loci for clopidogrel response by performing a large GWAS as part of a new Clopidogrel Pharmacogenomics GWAS Consortium;and (3) To identify rare variants in genes previously not known to influence platelet function or clopidogrel response by performing genome-wide exon (exome) sequencing from the extremes of the distribution of clopidogrel response.

Public Health Relevance

The proposed randomized clinical trial will provide the evidence base for translation of genotype-directed anti-platelet therapy into clinical practice. The Identification of common and rare variants in novel genes for clopidogrel response will provide new insights into platelet biology and variation in anti-platelet therapy response, and potentially, new targets for more effective agents to prevent and treat CHD.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GGG-M (52))
Program Officer
Jaquish, Cashell E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Schully, Sheri D; Lam, Tram Kim; Dotson, W David et al. (2015) Evidence synthesis and guideline development in genomic medicine: current status and future prospects. Genet Med 17:63-7
Maitland, Michael L; Xu, Chun-Fang; Cheng, Yu-Ching et al. (2015) Identification of a variant in KDR associated with serum VEGFR2 and pharmacodynamics of Pazopanib. Clin Cancer Res 21:365-72
Clancy, J P; Johnson, S G; Yee, S W et al. (2014) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype. Clin Pharmacol Ther 95:592-7
An, Ping; Straka, Robert J; Pollin, Toni I et al. (2014) Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response. Hum Genet 133:919-30
Weitzel, Kristin W; Elsey, Amanda R; Langaee, Taimour Y et al. (2014) Clinical pharmacogenetics implementation: approaches, successes, and challenges. Am J Med Genet C Semin Med Genet 166C:56-67
Relling, M V; McDonagh, E M; Chang, T et al. (2014) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin Pharmacol Ther 96:169-74
Shuldiner, Alan R; Palmer, Kathleen; Pakyz, Ruth E et al. (2014) Implementation of pharmacogenetics: the University of Maryland Personalized Anti-platelet Pharmacogenetics Program. Am J Med Genet C Semin Med Genet 166C:76-84
Martin, M A; Hoffman, J M; Freimuth, R R et al. (2014) Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Abacavir Dosing: 2014 update. Clin Pharmacol Ther 95:499-500
Ramsey, L B; Johnson, S G; Caudle, K E et al. (2014) The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 96:423-8
Muir, A J; Gong, L; Johnson, S G et al. (2014) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-*-based regimens. Clin Pharmacol Ther 95:141-6

Showing the most recent 10 out of 37 publications