There is an urgent need to develop systematic platforms to address the challenges and opportunities brought forth by the fast progresses of the Library of Integrated Network-Based Cellular Signatures (LINCS) program. The LINCS program performs cross-cutting high-throughput assays and develops integrative computational analysis of informative molecular activity and cellular feature signatures generated in response to a variety of perturbing agents and drug candidates. The primary goal of the proposed study is to address the needs by developing a signature-oriented software platform, the Integrative and Translational Network-based Cellular Signature Analyzer (itNETZ). The working flow of the system is: 1) to identify disease- and drug-specific molecular and cellular features, 2) to reveal the mechanismistic associations between components of such features and delineate them as signaling and regulating networks, 3) to present the dynamics of such networks by mathematical models, 4) to construct network-based molecular and cellular signatures, 5) to discover common signatures and networks across cell lines and diseases, 6) to establish and maintain a public resource of the increasing resultant knowledge of therapeutic responses, and 7) to facilitate the research community on querying signatures of interests, exploring correlations among signatures, and generating hypotheses. This system will enable the following functions: first, the basic analysis and discovery toolkits for processing cellular images, Luminex genomics data, transcriptome sequencing data, and for modeling phosphoproteins signaling pathway;and second, data integration and mining toolkits for mapping genomics and proteomics to cellular phenotypes, for core pathway signature identification on cell lines treated by different inhibitors and drug-induced pathway signature alterations, and for constructing drug kinome landscapes. The itNETZ system comprises pipelines that load input, analyze images, process genomics and proteomics data, export outputs into a relational database, integrate and mine the data, and generate network-based cellular signatures of interest. XML-based protocols will be used for data exchanging.

Public Health Relevance

This project will be a substantial contribution to the public health by understanding the mechanism of drugs, and network signature under different treatment conditions. More importantly, the completion of this project will help to answer some critical questions related to drug target signatures. Such understanding will in turn advance our knowledge in tumor biology and open up the possibility of novel treatments in the future.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01HL111560-03S1
Application #
8711758
Study Section
Special Emphasis Panel (ZRG1-BST-H (55))
Program Officer
Larkin, Jennie E
Project Start
2011-09-24
Project End
2014-06-30
Budget Start
2013-08-23
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$290,700
Indirect Cost
$100,700
Name
Wake Forest University Health Sciences
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo (2016) Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates. Sci Rep 6:34335
Peng, Huiming; Zhao, Weiling; Tan, Hua et al. (2016) Prediction of treatment efficacy for prostate cancer using a mathematical model. Sci Rep 6:21599
Chen, Huaidong; Chen, Wei; Liu, Chenglin et al. (2016) Relational Network for Knowledge Discovery through Heterogeneous Biomedical and Clinical Features. Sci Rep 6:29915
Peng, Huiming; Tan, Hua; Zhao, Weiling et al. (2016) Computational systems biology in cancer brain metastasis. Front Biosci (Schol Ed) 8:169-86
Guo, Dongmin; Li, King C; Peters, Timothy R et al. (2015) Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Sci Rep 5:8980
Tan, Hua; Bao, Jiguang; Zhou, Xiaobo (2015) Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Sci Rep 5:12566
Liu, Chenglin; Su, Jing; Yang, Fei et al. (2015) Compound signature detection on LINCS L1000 big data. Mol Biosyst 11:714-22
Ji, Zhiwei; Wu, Dan; Zhao, Weiling et al. (2015) Systemic modeling myeloma-osteoclast interactions under normoxic/hypoxic condition using a novel computational approach. Sci Rep 5:13291
Suresh, V; Liu, Liang; Adjeroh, Donald et al. (2015) RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res 43:1370-9
Peng, Huiming; Peng, Tao; Wen, Jianguo et al. (2014) Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach. Bioinformatics 30:1899-907

Showing the most recent 10 out of 23 publications