Currently available antipsychotics for schizophrenia are not effective for the treatment of all major symptoms associated with the disease and are associated with a number of dose-limiting adverse effects. Thus, there is a critical need to develop novel therapeutic agents for treatment of schizophrenia that have broader efficacy and fewer adverse effects than currently available medications. We propose studies aimed at discovery and optimization of novel drug candidates for treatment of schizophrenia that are mechanistically unrelated to currently available antipsychotic agents and have the potential to provide efficacy in treatment of all major symptom clusters of this disease. The most advanced of these programs is focused on discovery of novel compounds that inhibit the glycine transporter 1, GlyT1. Glycine is a co-agonist with glutamate at the A/-methyl-D-aspartate (NMDA) subtype of glutamate receptors and provides an excellent approach to increasing NMDA receptor function while maintaining activity dependence of NMDA receptor activation. A number of clinical and animals studies suggest that GlyTI inhibitors have exciting potential for treatment of schizophrenia. To date, we have optimized novel scaffolds of GlyTI inhibitors with excellent pharmacokinetic and brain penetration profiles, robust efficacy in animal models, and lack significant toxicity. A second program is focused on discovery and optimization of highly selective allcsteric agonists of the M1 muscarinic acetylcholine receptor. We have established a novel approach to development of highly selective agonists of the M1 muscarinic acetylcholine receptor by targeting allosteric sites and have shown that these compounds have robust efficacy in animal models that predict efficacy in treatment of schizophrenia. Both the Ml and GlyTI programs are based on strong validation from animal models and exciting clinical data that provide support for pursuing these novel targets. Our overall objective is to optimize drug candidates that interact with each of these targets. Ultimately, we will work with industry partners to develop these drug candidates in clinical studies. We will begin with lead optimization of GlyTI inhibitors, followed by hit-tc-lead and lead optimization of Ml allosteric agonists with a goal of advancing molecules that interact with each of these to a stage where they are ready for preclinical and clinical development. Finally, we have a pipeline of additional targets for which we have chemically diverse verified hits and early drug leads that are poised for full lead optimization efforts. While not specifically included in this application, this provides a robust discovery pipeline that will be important for the future directions of this program. PUBLIC HEALTH REVELANCE: The major goal of this program is to discover novel drug candidates that will ultimately advance into clinical testing for treatment of schizophrenia. If successful, novel drugs that come from this effort could lead to a fundamental breakthrough in the treatment of this disorder and could dramatically improve the standard of care for this devastating disorder.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-F (03))
Program Officer
Brady, Linda S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Sheffler, Douglas J; Nedelovych, Michael T; Williams, Richard et al. (2014) Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 2: development of a [3.3.0]-based series and other piperidine bioisosteres. Bioorg Med Chem Lett 24:1062-6
Maltese, Marta; Martella, Giuseppina; Madeo, Graziella et al. (2014) Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors. Mov Disord 29:1655-65
Bubser, Michael; Bridges, Thomas M; Dencker, Ditte et al. (2014) Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem Neurosci 5:920-42
Jones, Carrie K; Sheffler, Douglas J; Williams, Richard et al. (2014) Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 1: development of a potent and CNS penetrant [3.1.0]-based lead. Bioorg Med Chem Lett 24:1067-70
Nickols, Hilary Highfield; Conn, P Jeffrey (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61:55-71
Rook, Jerri M; Noetzel, Meredith J; Pouliot, Wendy A et al. (2013) Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry 73:501-9
Bridges, Thomas M; Rook, Jerri M; Noetzel, Meredith J et al. (2013) Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure-like adverse events in rats involving a receptor agonism-dependent mechanism. Drug Metab Dispos 41:1703-14
Engers, Darren W; Lindsley, Craig W (2013) Allosteric modulation of Class C GPCRs: a novel approach for the treatment of CNS disorders. Drug Discov Today Technol 10:e269-76
Wang, Hao-Ran; Wu, Meng; Yu, Haibo et al. (2011) Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133. ACS Chem Biol 6:845-56