Nanoparticles are emerging tools that will impact medical diagnosis and therapeutics with their capacity to target cells and tissues with imaging agents and/or drug payloads. The unique physical aspects of nanoparticles present new challenges for guidance and regulation. A wide variety of blood contact interactions may compromise intended nanoparticle activities and/or cause serious side effects. The simulation modeling of these and other critical biological interactions would provide a powerful predictive instrument that would offer a focus for the safety review of product candidates and allow the crafting of specific guidelines to be addressed by future applicants. It is known that certain lipid encapsulated nanoparticles activate the complement system, with the potential of severe tissue damage. We propose to develop a standard series of assays to characterize the interactions of complement with lipid encapsulated nanoparticles. The results will be applied to a bioinformatics-modeling system to design and assess next generation nanoparticles for clinical use. Our proposed specific efforts would provide a proof-of-concept approach to study a broad array of nanostructure:biological interactions that are currently difficult to predict prior to human study. To these ends we submit the following specific aims: (1) Develop standardized protocols using human in vitro and mouse In vivo models to characterize the capacity of lipid encapsulated nanoparticles to activate complement, to identify the activation pathways that facilitate the process, and to assess the impact of endogenous complement inhibitors on nanoparticle-dependent complement activation. (2) Vary lipid encapsulated nanoparticles to understand the influence of particle surface characteristics on complement activation. Manipulate surfactant components by utilizing natural and synthetically modified lipids to create a broad spectrum of biochemical presentations at, above, and below water-membrane interface that impart different charge or surface chemical properties. (3) Develop structure-activity relationships to predict complement activation.

Public Health Relevance

Nanoparticles are emerging tools that will impact medical diagnosis and therapeutics but present new challenges for product safety. The goal of this proposal is to construct a method for predicting likely harmful effects of nanoparticles prior to their testing in human subjects. Such a device would offer a focus for safety review of new candidate nanoparticle products and allow the crafting of specific guidelines to be addressed hv future nannnartinip riPRinns

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-ETTN-A (50))
Program Officer
Morris, Jill A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Pan, Dipanjan; Schirra, Carsten O; Wickline, Samuel A et al. (2014) Multicolor computed tomographic molecular imaging with noncrystalline high-metal-density nanobeacons. Contrast Media Mol Imaging 9:13-25
Pham, Christine T N; Thomas, Dennis G; Beiser, Julia et al. (2014) Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles. Nanomedicine 10:651-60
Lanza, Gregory M; Moonen, Chrit; Baker Jr, James R et al. (2014) Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:1-14
Pan, Dipanjan; Schmieder, Anne H; Wang, Kezheng et al. (2014) Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using ?(v)??-targeted theranostic nanoparticles. Theranostics 4:565-78
Schmieder, Anne H; Wang, Kezheng; Zhang, Huiying et al. (2014) Characterization of early neovascular response to acute lung ischemia using simultaneous (19)F/ (1)H MR molecular imaging. Angiogenesis 17:51-60
Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D et al. (2014) Antagonizing the ?v ?3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading. J Bone Miner Res 29:1970-80
Lanza, Gregory M; Pan, Dipanjan (2014) Molecular imaging with computed tomography. Contrast Media Mol Imaging 9:1-2
Zhou, Hui-fang; Yan, Huimin; Hu, Ying et al. (2014) Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 8:7305-17
Thomas, Dennis G; Gaheen, Sharon; Harper, Stacey L et al. (2013) ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol 13:2
Tomlinson, Ryan E; McKenzie, Jennifer A; Schmieder, Anne H et al. (2013) Angiogenesis is required for stress fracture healing in rats. Bone 52:212-9

Showing the most recent 10 out of 14 publications