The primary goal of the Epi4K Center Without Walls is to increase understanding of the genetic basis of human epilepsy in order to improve the well-being of patients and family members living with these disorders. This improvement will come in the form of better diagnostics, treatments and cures. To accomplish this goal, Epi4K aims to analyze the exomes and genomes of a large number of well-phenotyped epilepsy patients and families collected by investigators from several major research groups. The specific goals of this project (4 of 7: Epileptic Encephalopathies) are to discover mutations or deletions in genes by mining sequence data from exomes of 500 patients with two severe childhood epileptic encephalopathies. Infantile Spasms (IS) and Lennox Gastaut Syndrome (LGS), to understand how these mutations fit into a broader network of developmental interactions within the brain and to compare the causes of these defined epilepsies with other epileptic encephalopathies (EE) of childhood. Dr. Sherr from UCSF, Dr. Scheffer from the University of Melbourne and Dr. Mefford from the University of Washington will co-direct this project. The discovery of novel genes that lead to IS/LGS and other severe childhood EE in the Epi4K cohorts will further our understanding of epilepsy genetics and lead to a better understanding of epilepsy pathophysiology and to the possibility of better tools for diagnosis and treatment.

Public Health Relevance

Epilepsy is one of the most common neurological disorders in humans, affecting up to 3% of the population. Although it is clear that there is a strong genetic component for epilepsy, there are still only a few genes known. The Epi4K project will identify new genes and genetic pathways in epilepsy and will directly benefit individuals with epilepsy and their families through improved diagnostic, prognostic and recurrence risk information. Greater understanding of the genes involved in normal development and function of the brain.
Discl aim er: Please note that the following critiques were prepared by the reviewers prior to the Study Section meeting and are provided in an essentially unedited form. While there is opportunity for the reviewers to update or revise their written evaluation, based upon the group's discussion, there is no guarantee that individual critiques have been updated subsequent to the discussion at the meeting. Therefore, the critiques may not fully reflect the final opinions of th individual reviewers at the close of group discussion or the final majority opinion of the group. Thus the Resume and Summary of Discussion is the final word on what the reviewers actually considered critical at the meeting.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01NS077364-01
Application #
8242147
Study Section
Special Emphasis Panel (ZNS1-SRB-B (29))
Program Officer
Stewart, Randall R
Project Start
2011-09-30
Project End
2014-08-31
Budget Start
2011-09-30
Budget End
2012-08-31
Support Year
1
Fiscal Year
2011
Total Cost
$294,270
Indirect Cost
Name
University of California San Francisco
Department
Neurology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Epi4K Consortium; EuroEPINOMICS-RES Consortium; Epilepsy Phenome Genome Project (2017) Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data. Eur J Hum Genet 25:894-899
Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi et al. (2017) Annotating pathogenic non-coding variants in genic regions. Nat Commun 8:236
Roohi, Jasmin; Crowe, Jennifer; Loredan, Denis et al. (2017) New diagnosis of atypical ataxia-telangiectasia in a 17-year-old boy with T-cell acute lymphoblastic leukemia and a novel ATM mutation. J Hum Genet 62:581-584
Broix, Loïc; Jagline, Hélène; Ivanova, Ekaterina et al. (2016) Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet 48:1349-1358
Epi4K Consortium (2016) De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies. Am J Hum Genet 99:287-98
Epilepsy Phenome/Genome Project Epi4K Consortium (2015) Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Ann Neurol 78:323-8
EuroEPINOMICS-RES Consortium; Epilepsy Phenome/Genome Project; Epi4K Consortium (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 95:360-70
Mousallem, Talal; Yang, Jialong; Urban, Thomas J et al. (2014) A nonsense mutation in IKBKB causes combined immunodeficiency. Blood 124:2046-50
Liu, Yongzhuang; Li, Bingshan; Tan, Renjie et al. (2014) A gradient-boosting approach for filtering de novo mutations in parent-offspring trios. Bioinformatics 30:1830-6
Jiang, Yu; Satten, Glen A; Han, Yujun et al. (2014) Utilizing population controls in rare-variant case-parent association tests. Am J Hum Genet 94:845-53

Showing the most recent 10 out of 14 publications