No cures exist, but the number of Parkinson's patients is expected to nearly double to 9.3 million in 2030. Two roadblocks impede progress on disease-modifying therapeutics. Current clinical trials are handicapped by late diagnosis, relying on impaired movements that occur when underlying neuropathology has far advanced. Moreover, in phase II clinical trials, testing safety and tolerability of a compound is straightforward, but drug effects on the underlying disease processes cannot be detected by current symptom-based measures. Here we propose a specific and a general strategy to overcome these roadblocks. More than 90,000 non-protein coding, regulatory RNAs may account for the complexity of the human brain in health and disease. Thousands of these previously hidden RNAs abound in dopaminergic neurons and regulate Parkinson's gene expression and bioenergetics processes involved in the disease onset. Regulatory RNAs integrate environmental, epigenetic, and genetic variation and directly reflect altered physiology without translation into protein. This offers a potentially ground breaking opportunity for biomarker development. Initially, we will systematically delineate all non-coding RNAs associated with incipient Parkinson's neuropathology in dopamine neurons laser-captured from 100 human brains using massively parallel sequencing and unlimited transcriptome reconstruction. Then, we will translate regulatory RNAs linked to the earliest neuropathological processes into digital biomarkers detectable in bloodstream and cerebrospinal fluid of 242 and 167 subjects, respectively. To build a generally useful express lane for biomarker development we propose a Harvard-NINDS partnership. It will leverage an unparalleled infrastructure and deliver a longitudinal Parkinson's biobank -- a catalytic, open platform for jump-starting the discovery and validation of PD biomarkers. Ancillary cerebrospinal fluid collection will be performed in the Harvard NeuroDiscovery Center Biomarker Study, a longitudinal, case-control study that already tracks clinical phenotypes and linked biospecimens of >1,886 individuals with Parkinson's disease and controls. This study will discover and translate viable biomarkers for the early detection of Parkinson's disease processes and contribute to a generally useful express lane for biomarkers development.

Public Health Relevance

No cures exist, but the number of Parkinson's patients is expected to nearly double to 9.3 million in 2030 posing an increasing threat to public health with annual costs estimated at $10.8 billion in the US alone. We propose a specific and a general strategy to overcome two critical roadblocks that impede progress on developing disease-modifying therapeutics.

Agency
National Institute of Health (NIH)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS082157-03
Application #
8727121
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Gwinn, Katrina
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Cesani, Martina; Cavalca, Eleonora; Macco, Romina et al. (2014) Metallothioneins as dynamic markers for brain disease in lysosomal disorders. Ann Neurol 75:127-37
Cebrián, Carolina; Zucca, Fabio A; Mauri, Pierluigi et al. (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 5:3633
Ziegler, David A; Ashourian, Paymon; Wonderlick, Julien S et al. (2014) Motor impulsivity in Parkinson disease: associations with COMT and DRD2 polymorphisms. Scand J Psychol 55:278-86
Santiago, Jose A; Scherzer, Clemens R; Potashkin, Judith A (2014) Network analysis identifies SOD2 mRNA as a potential biomarker for Parkinson's disease. PLoS One 9:e109042
Santiago, Jose A; Scherzer, Clemens R; Harvard Biomarker Study et al. (2013) Specific splice variants are associated with Parkinson's disease. Mov Disord 28:1724-7
Ding, Hongliu; Dhima, Kaltra; Lockhart, Kaitlin C et al. (2013) Unrecognized vitamin D3 deficiency is common in Parkinson disease: Harvard Biomarker Study. Neurology 81:1531-7