Revealing how our brain works is a great challenge but yet worth our every effort: it will not only illuminate the profound mysteries in science but also provide the key to understanding and treating neurological diseases such as Alzheimer's and Parkinson's. The objective of the proposed three-year research is to develop a high- speed, high-spatial-resolution, deep-penetration photoacoustic computed tomography (PACT) system for real- time imaging of action potentials in mouse brains. The proposed hardware imaging system will be unprecedented in the field of PACT in terms of frame rate and spatial resolving power, and the proposed use of voltage-sensitive absorption dyes in PACT is also novel. In comparison to existing high-resolution optical neuroimaging modalities such as two-photon microscopy, the proposed system will provide deeper penetration for whole mouse brain imaging. The timing for such an exciting project is perfect due to the following recent events. Our unpublished ongoing works have shown for the first time that (1) PACT has reached x-ray CT like image quality (see images in the Aim 2 section) and (2) some of the voltage-sensitive fluorescent dyes provide excellent photoacoustic contrast (see data in the Aim 1 section). The ultrasound imaging industry has just started to sell standalone multi-channel data acquisition systems without bundling to a conventional linear-array ultrasonographic system that we do not need, and the users are given full access to the raw RF data. Massively parallel (512 channels) data acquisition enables real-time PACT. In addition to the RFA, the March publication in the Journal of Biomedical Optics by NIH Program Director, Dr. Jonathan D. Pollock, entitled Deep imaging technology needed for NIH BRAIN initiative,[1] urged our team to submit this grant application.
The specific aims i nclude 1. Screen voltage-sensitive probes for photoacoustic imaging in cell culture preparations and optimize detection parameters. 2. Develop a fast, high-resolution, deep-penetration PACT system. 3. Use PACT to image action potentials in mouse brains in vivo.

Public Health Relevance

Revealing how our brain works is a great challenge but yet worth our every effort: it will not only illuminate the profound mysteries in science but also provide the key to understanding and treating neurological diseases such as Alzheimer's and Parkinson's. There remains an important need for the development of high-speed, high-resolution technologies that can image deep into small animal brains. The proposed photoacoustic computed tomography (PACT) technology has the potential to meet this goal.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS090579-02
Application #
8934231
Study Section
Special Emphasis Panel (ZNS1-SRB-G (77))
Program Officer
Talley, Edmund M
Project Start
2014-09-30
Project End
2017-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
2
Fiscal Year
2015
Total Cost
$743,677
Indirect Cost
$256,020
Name
Washington University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Hsu, Hsun-Chia; Li, Lei; Yao, Junjie et al. (2018) Dual-axis illumination for virtually augmenting the detection view of optical-resolution photoacoustic microscopy. J Biomed Opt 23:1-7
Li, Lei; Shemetov, Anton A; Baloban, Mikhail et al. (2018) Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat Commun 9:2734
Imai, Toru; Shi, Junhui; Wong, Terence T W et al. (2018) High-throughput ultraviolet photoacoustic microscopy with multifocal excitation. J Biomed Opt 23:1-6
Yao, Junjie; Wang, Lihong V (2018) Recent progress in photoacoustic molecular imaging. Curr Opin Chem Biol 45:104-112
Yang, Jiamiao; Gong, Lei; Shen, Yuecheng et al. (2018) Synthetic Bessel light needle for extended depth-of-field microscopy. Appl Phys Lett 113:181104
Zhang, Pengfei; Li, Lei; Lin, Li et al. (2018) High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J Biophotonics 11:
Cai, De; Wong, Terence T W; Zhu, Liren et al. (2018) Dual-view photoacoustic microscopy for quantitative cell nuclear imaging. Opt Lett 43:4875-4878
Yang, Jiamiao; Shen, Yuecheng; Liu, Yan et al. (2017) Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Appl Phys Lett 111:201108
Rao, Bin; Zhang, Ruiying; Li, Lei et al. (2017) Photoacoustic imaging of voltage responses beyond the optical diffusion limit. Sci Rep 7:2560
Li, Lei; Zhu, Liren; Ma, Cheng et al. (2017) Single-impulse Panoramic Photoacoustic Computed Tomography of Small-animal Whole-body Dynamics at High Spatiotemporal Resolution. Nat Biomed Eng 1:

Showing the most recent 10 out of 18 publications