Severe asthma is a heterogeneous disease with distinct clinical phenotypes characterized by differences in susceptibility to exacerbation, loss of lung function, chronic mucus hypersecretion, and refractoriness to anti- inflammatory therapy. Our objectives are to define severe asthma phenotypes at the molecular and cellular level longitudinally in order to predict prognosis, identify novel treatment targets, and guide targeted therapy. Our overarching hypothesis is that differences in clinical presentation, outcomes, and response to therapy in severe asthma are driven by: 1) distinct types of airway inflammation and remodeling developed and maintained by specific molecular pathways;2) microbial colonization or infection;3) genetic/epigenetic factors.
Aim 1 proposes a shared longitudinal protocol to identify and validate phenotypic characteristics of severe asthma based on underlying pathobiology and pathophysiology. Our protocol incorporates a two- phase design with an initial six-month phase of supervised guideline-based therapy to document baseline clinical and molecular phenotypes, the stability of these phenotypes over time, and response to standardized therapy. This initial phase will be followed by a 2.5 year follow-up phase to document exacerbation frequency and rate of loss of lung function.
Aim 2 will explore mechanisms of pathologic mucus in severe asthma in two sub-aims that will both use rheology to quantify the viscoelastic properties of induced sputum from patients with chronic severe asthma. We will identify subgroups of severe asthmatics with chronic mucus hypersecretion and abnormal mucus rheology, determine the clinical and biological characteristics of these subgroups, and explore in ex vivo studies the role of multimeric lectins as cross-linkers of mucin polymers and potential targets of glycomimetic therapy. Included in the lectins we will study will be Aspergillus fumigatus lectin, a fucose binding lectin that we hypothesize to have a pathogenic role in the mechanism of mucus plug formation in Allergic Bronchopulmonary Aspergillosis, an important subtype of severe asthma.

Public Health Relevance

Severe asthma occurs in 5-10% of asthmatics and accounts for much of the public health burden of the disease. Patients with severe asthma have unmet therapeutic needs because many respond sub-optimally to currently available treatments. To improve treatment for severe asthma it will be necessary to have a better understanding of the mechanisms of disease to guide targeted therapy.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Cooperative Clinical Research--Cooperative Agreements (U10)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-K (M2))
Program Officer
Noel, Patricia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Internal Medicine/Medicine
Schools of Medicine
San Francisco
United States
Zip Code
Lachowicz-Scroggins, Marrah E; Yuan, Shaopeng; Kerr, Sheena C et al. (2016) Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am J Respir Crit Care Med 194:1296-1299
Peters, Michael C; McGrath, Kelly Wong; Hawkins, Gregory A et al. (2016) Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med 4:574-84
Gordon, Erin D; Locksley, Richard M; Fahy, John V (2016) Cross-Talk between Epithelial Cells and Type 2 Immune Signaling. The Role of IL-25. Am J Respir Crit Care Med 193:935-6
Fahy, John V (2016) Asthma Was Talking, But We Weren't Listening. Missed or Ignored Signals That Have Slowed Treatment Progress. Ann Am Thorac Soc 13 Suppl 1:S78-82
Kerr, Sheena C; Fischer, Gregory J; Sinha, Meenal et al. (2016) FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog 12:e1005555
Reber, Laurent L; Fahy, John V (2016) Mast cells in asthma: biomarker and therapeutic target. Eur Respir J 47:1040-2
Dunican, Eleanor M; Fahy, John V (2015) The Role of Type 2 Inflammation in the Pathogenesis of Asthma Exacerbations. Ann Am Thorac Soc 12 Suppl 2:S144-9
Peters, Michael C; Mekonnen, Zesemayat K; Yuan, Shaopeng et al. (2014) Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol 133:388-94
Jackson, Daniel J; Hartert, Tina V; Martinez, Fernando D et al. (2014) Asthma: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 11 Suppl 3:S139-45
Peters, Michael C; Fahy, John V (2013) Type 2 immune responses in obese individuals with asthma. Am J Respir Crit Care Med 188:633-4

Showing the most recent 10 out of 15 publications