Severe asthma is a heterogeneous disease with distinct clinical phenotypes characterized by differences in susceptibility to exacerbation, loss of lung function, chronic mucus hypersecretion, and refractoriness to anti- inflammatory therapy. Our objectives are to define severe asthma phenotypes at the molecular and cellular level longitudinally in order to predict prognosis, identify novel treatment targets, and guide targeted therapy. Our overarching hypothesis is that differences in clinical presentation, outcomes, and response to therapy in severe asthma are driven by: 1) distinct types of airway inflammation and remodeling developed and maintained by specific molecular pathways;2) microbial colonization or infection;3) genetic/epigenetic factors.
Aim 1 proposes a shared longitudinal protocol to identify and validate phenotypic characteristics of severe asthma based on underlying pathobiology and pathophysiology. Our protocol incorporates a two- phase design with an initial six-month phase of supervised guideline-based therapy to document baseline clinical and molecular phenotypes, the stability of these phenotypes over time, and response to standardized therapy. This initial phase will be followed by a 2.5 year follow-up phase to document exacerbation frequency and rate of loss of lung function.
Aim 2 will explore mechanisms of pathologic mucus in severe asthma in two sub-aims that will both use rheology to quantify the viscoelastic properties of induced sputum from patients with chronic severe asthma. We will identify subgroups of severe asthmatics with chronic mucus hypersecretion and abnormal mucus rheology, determine the clinical and biological characteristics of these subgroups, and explore in ex vivo studies the role of multimeric lectins as cross-linkers of mucin polymers and potential targets of glycomimetic therapy. Included in the lectins we will study will be Aspergillus fumigatus lectin, a fucose binding lectin that we hypothesize to have a pathogenic role in the mechanism of mucus plug formation in Allergic Bronchopulmonary Aspergillosis, an important subtype of severe asthma.

Public Health Relevance

Severe asthma occurs in 5-10% of asthmatics and accounts for much of the public health burden of the disease. Patients with severe asthma have unmet therapeutic needs because many respond sub-optimally to currently available treatments. To improve treatment for severe asthma it will be necessary to have a better understanding of the mechanisms of disease to guide targeted therapy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Cooperative Clinical Research--Cooperative Agreements (U10)
Project #
5U10HL109146-04
Application #
8680343
Study Section
Special Emphasis Panel (ZHL1-CSR-K (M2))
Program Officer
Noel, Patricia
Project Start
2011-08-08
Project End
2017-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
4
Fiscal Year
2014
Total Cost
$691,139
Indirect Cost
$243,800
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
McGarry, Meghan E; Neuhaus, John M; Nielson, Dennis W et al. (2017) Pulmonary function disparities exist and persist in Hispanic patients with cystic fibrosis: A longitudinal analysis. Pediatr Pulmonol 52:1550-1557
Phipatanakul, Wanda; Mauger, David T; Sorkness, Ronald L et al. (2017) Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. Am J Respir Crit Care Med 195:1439-1448
Teague, W Gerald; Phillips, Brenda R; Fahy, John V et al. (2017) Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. J Allergy Clin Immunol Pract :
Ricklefs, Isabell; Barkas, Ioanna; Duvall, Melody G et al. (2017) ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight 2:
Wong-McGrath, Kelly; Denlinger, Loren C; Bleecker, Eugene R et al. (2017) Internet-Based Monitoring in the Severe Asthma Research Program Identifies a Subgroup of Patients With Labile Asthma Control. Chest :
Kerr, Sheena C; Fischer, Gregory J; Sinha, Meenal et al. (2016) FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog 12:e1005555
Lachowicz-Scroggins, Marrah E; Yuan, Shaopeng; Kerr, Sheena C et al. (2016) Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am J Respir Crit Care Med 194:1296-1299
Gordon, Erin D; Locksley, Richard M; Fahy, John V (2016) Cross-Talk between Epithelial Cells and Type 2 Immune Signaling. The Role of IL-25. Am J Respir Crit Care Med 193:935-6
Fahy, John V (2016) Asthma Was Talking, But We Weren't Listening. Missed or Ignored Signals That Have Slowed Treatment Progress. Ann Am Thorac Soc 13 Suppl 1:S78-82
Reber, Laurent L; Fahy, John V (2016) Mast cells in asthma: biomarker and therapeutic target. Eur Respir J 47:1040-2

Showing the most recent 10 out of 21 publications