There has been considerable progress in understanding the biology of Parkinson's disease (PD). Reliable biomarkers are still lacking, however, for early stage detection of PD and for characterizing disease progression. Advances in biotechnology have led to the advent of mental health studies that collect large-scale, multi-dimensional data sets, including brain imaging data, genomic data, and biologic and clinical measures. Such studies provide an unprecedented opportunity for cross-cutting investigations that stand to gain a deeper understanding of PD. A major limiting factor to multidimensional biomarker development, however, is the lack of statistical tools available to accommodate diverse, large-scale data. Leveraging data from neuromelanin magnetic resonance imaging (NM-MRI) of the locus coeruleus and the substantia nigra, chemical shift imaging (CSI), diffusion tensor imaging (DTI), resting-state functional MRI, cerebrospinal fluid (CSF) analytes, genotype information, and numerous clinical variables, we plan to develop novel statistical techniques to identify multimodal PD biomarkers. Our data provide an unprecedented opportunity for cross-cutting methodological advances in multimodal PD biomarker discovery. Separately, we will consider a massive patient database with nearly 250,000 subscribers in Georgia. Building on our collective expertise in developing statistical and machine-learning methods for large-scale imaging data and in the pathophysiology of PD, we plan to advance methods for PD biomarker analyses and discovery through the following specific aims. First, we plan to develop new statistical techniques to reveal multimodal biomarkers for PD including imaging, clinical, and biologic variables. Secondly, we plan to utilize the massive clinical database to identify clinical risk factors for early stage PD. Thirdly, we will develop software equipped with a friendly graphical user interface (GUI) to implement the multimodal biomarker detection methods.

Public Health Relevance

There is a critical unmet need for the discovery of early-stage Parkinson's disease (PD) biomarkers to assist and accelerate the process for conducting clinical trials targeting neuroprotective treatments. Large studies with clinical, molecular, genetic, and neuroimaging measures produce complex multidimensional datasets, which may be useful to help establish such biomarkers. We plan to develop new statistical methods that integrate multiple high-dimensional data sets to identify accurate and robust multimodal biomarkers of PD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Demonstration--Cooperative Agreements (U18)
Project #
1U18NS082143-01
Application #
8473443
Study Section
Special Emphasis Panel (ZNS1-SRB-J (02))
Program Officer
Babcock, Debra J
Project Start
2012-09-30
Project End
2015-08-31
Budget Start
2012-09-30
Budget End
2013-08-31
Support Year
1
Fiscal Year
2012
Total Cost
$300,420
Indirect Cost
$106,497
Name
Emory University
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Xue, Wenqiong; Bowman, F DuBois; Kang, Jian (2018) A Bayesian Spatial Model to Predict Disease Status Using Imaging Data From Various Modalities. Front Neurosci 12:184
Zhang, Lijun; Wang, Ming; Sterling, Nicholas W et al. (2018) Cortical Thinning and Cognitive Impairment in Parkinson's Disease without Dementia. IEEE/ACM Trans Comput Biol Bioinform 15:570-580
Solo, Victor; Poline, Jean-Baptiste; Lindquist, Martin A et al. (2018) Connectivity in fMRI: Blind Spots and Breakthroughs. IEEE Trans Med Imaging 37:1537-1550
Cassidy, Ben; Bowman, F DuBois; Rae, Caroline et al. (2018) On the Reliability of Individual Brain Activity Networks. IEEE Trans Med Imaging 37:649-662
Bowman, F DuBois; Drake, Daniel F; Huddleston, Daniel E (2016) Multimodal Imaging Signatures of Parkinson's Disease. Front Neurosci 10:131
Langley, Jason; Huddleston, Daniel E; Merritt, Michael et al. (2016) Diffusion tensor imaging of the substantia nigra in Parkinson's disease revisited. Hum Brain Mapp 37:2547-56
Chen, Shuo; Bowman, F DuBois; Mayberg, Helen S (2016) A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data. Biometrics 72:596-605
Rosenthal, Liana S; Drake, Daniel; Alcalay, Roy N et al. (2016) The NINDS Parkinson's disease biomarkers program. Mov Disord 31:915-23
Kang, Jian; Bowman, F DuBois; Mayberg, Helen et al. (2016) A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs. Neuroimage 141:431-441
Langley, Jason; Huddleston, Daniel E; Chen, Xiangchuan et al. (2015) A multicontrast approach for comprehensive imaging of substantia nigra. Neuroimage 112:7-13

Showing the most recent 10 out of 15 publications