Technical Development Project 1: Measuring the Immunome: Genomic Approaches to B Cell Repertoire. In this project, we propose to develop new technological applications of next generation DNA sequencing, high throughput PCR chips, and microfluidic single cell processors to perform systemic analyses of the human B cell repertoire. Using B cells purified from human peripheral blood, we will apply these technologies to try to understand the effects of three phenomena on immune repertoire: aging, genetic background and vaccination history. Four groups of subjects will be studied: 1. age groups - children, young adults and elderly;2. genetic background - identical twins vs fraternal twins vs not-related subjects;3. vaccination history - pre, post and multiple immunizations;4. vaccination type - the trivalent inactivated influenza vaccine (TIV) and the live attenuated influenza vaccine (LAIV). This study will provide the first comprehensive and systematic measurements of B cell repertoire at three different anatomic levels, V/D/J/C exon usage, immunoglobulin (Ig) gene deep sequencing, and single cell gene expression analysis.
Our specific aims are:
Aim 1. Develop a quick and quantitative assay to measure the V, D J, and C exon usage landscape.
Aim 2. Develop a high throughput sequencing protocol to perform deep sequencing of Ig heavy chain gene diversity.
Aim 3. Develop a microfluidic parallel processor for single cell analysis of B cell repertoire.
Aim 4. Dissect the influences of aging, genetic background, and vaccination history on the human B cell repertoire.

Public Health Relevance

Data generated from this study will advance our understanding of the B cell repertoire in response to influenza vaccine, which in turn will increase our knowledge of how influenza interacts with the immune system. In addition, technologies developed here may prove useful to advance clinical diagnostics for influenza and other pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-07
Application #
8060521
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
7
Fiscal Year
2010
Total Cost
$262,773
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vallania, Francesco; Tam, Andrew; Lofgren, Shane et al. (2018) Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases. Nat Commun 9:4735
Bongen, Erika; Vallania, Francesco; Utz, Paul J et al. (2018) KLRD1-expressing natural killer cells predict influenza susceptibility. Genome Med 10:45
Sweeney, Timothy E; Azad, Tej D; Donato, Michele et al. (2018) Unsupervised Analysis of Transcriptomics in Bacterial Sepsis Across Multiple Datasets Reveals Three Robust Clusters. Crit Care Med 46:915-925
Lin, Dongxia; Maecker, Holden T (2018) Mass Cytometry Assays for Antigen-Specific T Cells Using CyTOF. Methods Mol Biol 1678:37-47
Goltsev, Yury; Samusik, Nikolay; Kennedy-Darling, Julia et al. (2018) Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174:968-981.e15
Gee, Marvin H; Sibener, Leah V; Birnbaum, Michael E et al. (2018) Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 115:E7369-E7378
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Mamedov, Murad R; Scholzen, Anja; Nair, Ramesh V et al. (2018) A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity 48:350-363.e7
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362

Showing the most recent 10 out of 249 publications