A formidable and virtually unique challenge in influenza vaccine development is that the human population is repeatedly exposed to changing influenza viruses, which render previously immune individuals vulnerable to newly emerged strains, thus causing annual epidemics or even pandemics of influenza. While the human immune system has the intrinsic capability of coping with highly diversified viral antigens with its enormous antibody repertoire (estimated at a magnitude of 1011), it is our hypothesis that this potential diversity is significantly restricted in certain age groups, such as the elderly and the very young, and is not fully realized following immunization with certain types of vaccine in some age groups, such as the trivalent inactivated influenza vaccine (TIV) compared to the live attenuated influenza vaccine (LAIV) in young children^ In this application we propose to. address these, issues using, both serologic and molecular approaches, with an emphasis on the age groups most vulnerable to influenza morbidity and mortality - very young children and the elderly.
The specific aims of the proposal are: A1. To compare the antibody responses against the vaccine strains (homotypic reactivity) and mismatched virus strains (heterovariant reactivity) after immunization with LAIV or TIV. We will characterize and compare the heterovariant antibody responses in a collection of paired serum samples from young children, healthy adults and elderly who are vaccinated with these two types of influenza vaccines. We will also clone and express immunoglobulin (Ig) genes from individual antibody-secreting cells (ASCs) elicited shortly after immunization with TIV or LAIV in the different age groups and compare the specificity and affinity of these monoclonal antibodies against both homotypic and heterovariant influenza viruses. A2. To identify factors affecting the sequences of Ig genes encoding influenza-specific antibodies and determine the relationship between specific Ig gene sequence usage and function, we will carry out a systematic analysis of the sequences of Ig genes isolated from ASCs after immunization with LAIV or TIV, and relate the sequence characteristics of Ig genes to antibody reactivity against different influenza strains. In particular, we will compare the Ig gene sequences between the elderly, younger adults and children, between the recipients of LAIV and TIV and between IgG and IgA isotypes.

Public Health Relevance

This study is directly relevant to the design and administration of influenza vaccines for the prevention of pandemic and epidemic influenza, especially in the very young children and the elderly. It will also provide important information regarding the mechanisms responsible for the generation of protective B cell immunity against a wide array of other important human pathogens and bioterrorism agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-10
Application #
8508795
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
2013-04-01
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$331,086
Indirect Cost
$93,829
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Krishnaswamy, Smita; Spitzer, Matthew H; Mingueneau, Michael et al. (2014) Systems biology. Conditional density-based analysis of T cell signaling in single-cell data. Science 346:1250689
Bendall, Sean C; Davis, Kara L; Amir, El-Ad David et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714-25
Gaudillière, Brice; Fragiadakis, Gabriela K; Bruggner, Robert V et al. (2014) Clinical recovery from surgery correlates with single-cell immune signatures. Sci Transl Med 6:255ra131
Sen, Adrish; Rott, Lusijah; Phan, Nguyen et al. (2014) Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation. J Virol 88:41-53
Furman, David; Hejblum, Boris P; Simon, Noah et al. (2014) Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A 111:869-74
Sen, Nandini; Mukherjee, Gourab; Sen, Adrish et al. (2014) Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Rep 8:633-45
Pernas, Lena; Ramirez, Raymund; Holmes, Tyson H et al. (2014) Immune profiling of pregnant Toxoplasma-infected US and Colombia patients reveals surprising impacts of infection on peripheral blood cytokines. J Infect Dis 210:923-31
Bruggner, Robert V; Bodenmiller, Bernd; Dill, David L et al. (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111:E2770-7
Chang, Serena; Kohrt, Holbrook; Maecker, Holden T (2014) Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother 63:713-9
Birnbaum, Michael E; Mendoza, Juan L; Sethi, Dhruv K et al. (2014) Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073-87

Showing the most recent 10 out of 64 publications