Single cell mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on cell populations at single-cell resolution. Datasets are generated with antibody panels (upwards of 40) in which each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the Lanthanide series of the Periodic Table. The antibodies recognize surface markers that delineate cell types and intracellular signaling molecules demarcating multiple cell functions such as apoptosis, DNA damage and cell cycle. By measuring all these parameters simultaneously, the signaling state of an individual cell can be measured at the network level. Given the capabilities of mass cytometry, and recognizing a growing international biomedical and pharmaceutical interest in its application to immunology, diagnostics, and drug development, this Project will extend the current features of mass cytometry to nearly double the number of assayable channels through the creation of novel chelator-isotope pairings as well as new nanodots for highly sensitive detection of surface molecules. Further, we will enable additional virtual channels that increase the number of parameters measured per cell to as many as 200 using advanced signal processing tools such as compressed sensing along with signature based labeling. Finally, we will adapt DNA based amplification techniques to allow for low expressed protein epitope events and RNA copy number measurements down to as few as 5 target antigens measured quantitatively per cell. As per prior years with our other mass Cytometry protocols and computational abilities, developing and perfecting these additional capabilities will greatly enable the other Projects within our U19 center and will serve as a basis for extending these capabilities to others in the biomedical community, including other U19 Centers.

Public Health Relevance

Fluorescence-based flow cytometry has proven an invaluable technology for immunologists and clinicians. It provides critical biological information at the single-cell level regarding immunophenotype, frequency of cell subsets, expression levels of proteins, as well as functional characterization. In our further development of CyTOF as an advanced cytometry tool, we are greatly increasing the utility of the device by developing important new probes and providing them to the research community at large.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-13
Application #
9041498
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
13
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Furman, David; Chang, Junlei; Lartigue, Lydia et al. (2017) Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 23:174-184
Vendrame, Elena; Fukuyama, Julia; Strauss-Albee, Dara M et al. (2017) Mass Cytometry Analytical Approaches Reveal Cytokine-Induced Changes in Natural Killer Cells. Cytometry B Clin Cytom 92:57-67
Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse et al. (2017) EBI3 regulates the NK cell response to mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 114:1625-1630
Alcántara-Hernández, Marcela; Leylek, Rebecca; Wagar, Lisa E et al. (2017) High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity 47:1037-1050.e6
de Bourcy, Charles F A; Angel, Cesar J Lopez; Vollmers, Christopher et al. (2017) Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci U S A 114:1105-1110
Sweeney, Timothy E; Haynes, Winston A; Vallania, Francesco et al. (2017) Methods to increase reproducibility in differential gene expression via meta-analysis. Nucleic Acids Res 45:e1
Pardi, Norbert; Hogan, Michael J; Pelc, Rebecca S et al. (2017) Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543:248-251
Mukherjee, Sayak; Jensen, Helle; Stewart, William et al. (2017) In silico modeling identifies CD45 as a regulator of IL-2 synergy in the NKG2D-mediated activation of immature human NK cells. Sci Signal 10:
Glanville, Jacob; Huang, Huang; Nau, Allison et al. (2017) Identifying specificity groups in the T cell receptor repertoire. Nature 547:94-98
Raymond, Steven L; López, María Cecilia; Baker, Henry V et al. (2017) Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS One 12:e0184159

Showing the most recent 10 out of 198 publications