Vaccination represents one of the major successes of medicine as it has spared countless people from polio, tetanus and other acute infections. Yet, improved immunization strategies are needed to make vaccines for microbes that cause considerable morbidity . To identify novel strategies for protective vaccination we will study dendritic cells (DCs) which specialized to capture and process antigens in vivo, presenting the MHC molecules to T cells. DCs also present antigens to B cells. Maturation and subsets allow DCs to control diverse immune responses. Our long-term goal is to develop novel human vaccines based on in vivo DC-targeting. Our hypothesis is that Human Dendritic cells subsets express distinct uptake and signaling receptors that need to be mobilized in concert to provide durable immune responses leading to increased resistance to microbes at the mucosal port of entry. To this end, we have made high affinity monoclonal antibodies against several DC surface molecules and conjugated them to several influenza virus proteins. We have shown that antigens delivered to a single type of human DCs through different surface lectins induce distinct types of antigen-specific CD4+ T cell responses. The current focus is on mucosal immunity because mucosa is a major site of invasion as well as replication of pathogens, including influenza virus. Thus, the induction/activation of two major effectors, B cells and CD8+ T cells, with mucosal homing capacity is expected to limit viral replication, resulting in reduced disease burden. Furthermore, induction of CD4+ T cells with helper functions for B cells or CTLs will enhance the longevity of memory cells and the magnitude and the quality of mucosal homing effectors. We view the candidate vaccine as a bispecific antibody a) binding to two different cell surface antigens, such as specific lectin for antigen delivery and CD40 for activation, or to two different DC subsets, to harness their capacity to induce different type of immune effectors, and in addition b)TLR agonists as DC activators. We propose four projects and two technical development components which will be supported by six cores.

Public Health Relevance

Novel strategies for protective vaccination are needed. This program will a establish new vaccine platform that will act through antibodies to dendritic cells to provide durable protective immune response. If successful this platform can be promptly transferred into phase I trials in human subjects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057234-09
Application #
8261386
Study Section
Special Emphasis Panel (ZAI1-KS-I (J3))
Program Officer
Quill, Helen R
Project Start
2003-09-30
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
9
Fiscal Year
2012
Total Cost
$4,668,879
Indirect Cost
$1,579,130
Name
Baylor Research Institute
Department
Type
DUNS #
145745022
City
Dallas
State
TX
Country
United States
Zip Code
75204
Schmitt, Nathalie; Liu, Yang; Bentebibel, Salah-Eddine et al. (2016) Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Rep 16:1082-95
Salabert, Nina; Todorova, Biliana; Martinon, Frédéric et al. (2016) Intradermal injection of an anti-Langerin-HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo. Eur J Immunol 46:689-700
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire et al. (2016) Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 213:1061-77
Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra et al. (2016) Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells. EBioMedicine 5:46-58
Ueno, Hideki; Banchereau, Jacques; Vinuesa, Carola G (2015) Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16:142-52
Schmitt, Nathalie; Ueno, Hideki (2015) Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol 34:130-6
Joo, HyeMee; Upchurch, Katherine; Zhang, Wei et al. (2015) Opposing Roles of Dectin-1 Expressed on Human Plasmacytoid Dendritic Cells and Myeloid Dendritic Cells in Th2 Polarization. J Immunol 195:1723-31
Akinbobuyi, Babatope; Byrd, Matthew R; Chang, Charles A et al. (2015) Facile syntheses of functionalized toll-like receptor 7 agonists. Tetrahedron Lett 56:458-460
Trobaugh, Derek; Green, Sharone (2015) Of Mice and Men: Protective and Pathogenic Immune Responses to West Nile virus Infection. Curr Trop Med Rep 2:41-48

Showing the most recent 10 out of 120 publications