The role of the genomics core is to support the research projects carried out by the center by providing state-of-the-art transcription profiling and data mining capabilities over a wide range of sample types. The center will have access to a facility that has been in continuous operation for the past 7 years. It has benefited from a continuous investment on the part of the Baylor Health Care System and has at its disposal state of the art genomic analysis instruments and IT infrastructure. Data will be generated on the highthrough and cost-effective Illumina BeadArray platform in a strictly controlled laboratory environment to insure the highest data quality and reproducibility. A team of bioinformaticians has been integrated to the core in order to develop and maintain the data management infrastructure that constitutes the backbone of its operation. Custom data management and mining solutions are available for the optimal exploitation of large volumes of microarray data. Bioinformatics and biostatistics support will also be made available to individual investigators for the analysis of their microarray results. The microarray core at BUR has carried out projects at the interface between the fields of genomics and immunology, and gained significant expertise in profiling: a) blood of patients with a wide range of diseases;b) small cell numbers isolated from tissues or cell cultures;c) blood exposed in vitro to a wide range of innate stimuli;and d) blood cultivated in the presence of antigenic peptides. Support will be provided for the following projects: Project 1 (Banchereau): profiling genes expressed in in vitro generated CD8+ CTL;Project 2 (Palucka): a) profiling T and B cells isolated from vaccinated animals; b) profiling human mucosal dendritic cells (DCs) isolated from humouse samples;Project 3 (Sekaly): profiling genes expressed in CD8+ CTL isolated from vaccinated patients;Project 4 (Legrand): a) profiling antigen specific immune-reactivity in the blood of non human primates (NHP), before and after vaccine administration;b) profiling human mucosal DCs isolated from NHP and human samples;Technology development 1 (Zurawski): microarray analyses will be performed in order to study the activation properties of the various DC targeting vaccines on DCs. Technology development 2 (Pascual): antigens specific B cells will be isolated from mucosal samples and analyzed with microarrays to establish their phenotype.

Public Health Relevance

Systems scale transcriptional profiling has become a mainstay for the study of the human immune system. The expertise involved in the preparation of samples, data acquisition and analysis is considerable and well beyond the capabilities of individual laboratories. Centralization is also driven by: a) the high cost of instrumentation and associated IT infrastructure, and b) higher reproducibility/comparability of the data.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057234-09
Application #
8377866
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
9
Fiscal Year
2012
Total Cost
$155,256
Indirect Cost
$55,733
Name
Baylor Research Institute
Department
Type
DUNS #
145745022
City
Dallas
State
TX
Country
United States
Zip Code
75204
Schmitt, Nathalie; Liu, Yang; Bentebibel, Salah-Eddine et al. (2016) Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Rep 16:1082-95
Salabert, Nina; Todorova, Biliana; Martinon, Frédéric et al. (2016) Intradermal injection of an anti-Langerin-HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo. Eur J Immunol 46:689-700
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire et al. (2016) Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 213:1061-77
Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra et al. (2016) Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells. EBioMedicine 5:46-58
Ueno, Hideki; Banchereau, Jacques; Vinuesa, Carola G (2015) Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16:142-52
Schmitt, Nathalie; Ueno, Hideki (2015) Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol 34:130-6
Joo, HyeMee; Upchurch, Katherine; Zhang, Wei et al. (2015) Opposing Roles of Dectin-1 Expressed on Human Plasmacytoid Dendritic Cells and Myeloid Dendritic Cells in Th2 Polarization. J Immunol 195:1723-31
Akinbobuyi, Babatope; Byrd, Matthew R; Chang, Charles A et al. (2015) Facile syntheses of functionalized toll-like receptor 7 agonists. Tetrahedron Lett 56:458-460
Trobaugh, Derek; Green, Sharone (2015) Of Mice and Men: Protective and Pathogenic Immune Responses to West Nile virus Infection. Curr Trop Med Rep 2:41-48

Showing the most recent 10 out of 120 publications