The Genomics and Computational Biology Core provides a critical means by which this U19 will achieve its goal of understanding the human innate and adaptive response to Yellow Fever Virus (YFV) in the young and aged. The Core will provide expertise, computational support and novel gene expression analysis technologies to enable the experiments detailed in this proposal. The Core will be centered at Dana-Farber Cancer Institute (DFCI), a leading institution in the application of genomic technologies, and include expert computational support from the Broad Institute of Harvard and MIT, and Georgia Institute of Technology. The Core will serve two primary functions. First, it will generate genomic data using a highthroughput expression profiling platform developed by our group that allows large numbers of samples to be profiled at low cost. It will also provide training for Project sites to generate genomic data from rare populations of cells using optimized RNA amplification approaches. Second, the Core will assist the projects to provide centralized design, development and analysis of genomicbased research that is instrumental to the projects.

Public Health Relevance

The Projects in this U19 will rely heavily on a range of genomics technologies to interrogate the innate and adaptive response to YFV in humans. The Genomics and Computational Biology Core will provide the analytic and experimental tools that will enable the Projects to execute their proposed goals. Characterizing the human immune response to YFV will accelerate the development of molecular predictors of immunity in humans, and optimize vaccination strategies for infectious disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057266-09
Application #
8375944
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
9
Fiscal Year
2012
Total Cost
$465,273
Indirect Cost
$98,888
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Moore, James; Ahmed, Hasan; Jia, Jonathan et al. (2018) What Controls the Acute Viral Infection Following Yellow Fever Vaccination? Bull Math Biol 80:46-63
Li, Yinyin; Goronzy, Jörg J; Weyand, Cornelia M (2018) DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 105:118-127
Henry, Carole; Palm, Anna-Karin E; Krammer, Florian et al. (2018) From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79
Goronzy, Jörg J; Hu, Bin; Kim, Chulwoo et al. (2018) Epigenetics of T cell aging. J Leukoc Biol 104:691-699
Watanabe, Ryu; Maeda, Toshihisa; Zhang, Hui et al. (2018) MMP (Matrix Metalloprotease)-9-Producing Monocytes Enable T Cells to Invade the Vessel Wall and Cause Vasculitis. Circ Res 123:700-715
Weyand, Cornelia M; Shen, Yi; Goronzy, Jorg J (2018) Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic Biol Med 125:36-43
Wilson, Patrick C; Cobey, Sarah (2018) Characterization of the immunologic repertoire: A quick start guide. Immunol Rev 284:5-8
Buenrostro, Jason D; Corces, M Ryan; Lareau, Caleb A et al. (2018) Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell 173:1535-1548.e16
Stamper, Christopher T; Wilson, Patrick C (2018) What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Is Affinity Maturation a Self-Defeating Process for Eliciting Broad Protection? Cold Spring Harb Perspect Biol 10:
Mezger, Anja; Klemm, Sandy; Mann, Ishminder et al. (2018) High-throughput chromatin accessibility profiling at single-cell resolution. Nat Commun 9:3647

Showing the most recent 10 out of 257 publications