Immunological memory is a defining feature of the adaptive immune system. Memory T cells carry an Imprint from the previous antigen encounter for decades, which enables them to respond more vigorously and to develop effector functions more rapidly upon antigen recognition than naive T cells. Epigenetic mechanisms have been suspected to allow for more rapid gene activation and also maintain a response pattern that was originally developed on the first antigen encounter. With Increasing age the ability of the adaptive immune system to generate and maintain T cell memory is severely impaired compromising the efficacy of vaccination. In studies during the last funding period, we have identified negative feedback signaling loops that impair T cell responses in the elderly. Here, we propose to examine how these signaling pathways involving miR181a, AMPK and SIRTI regulate T effector and memory cell differentiation by controlling the activity of selected transcription factors and epigenetic imprinting. In four specific aims, we will perform mechanistic in vitro studies in parallel to correlative in vivo studies on antigen-specific T cells after yellow fever vaccination.
In Aim 1, we will further define the role of AMPK and SIRTI pathways for T cell expansion and differentiation in young and elderly adults and examine the relationship to the expression of miR181a that declines with age.
In Aim 2, we will explore how innate immunity and in particular type 1 IFN regulates these pathways and what the consequences are for the differentiation and survival of elderly CD4 T cells that have reduced sensitivity to respond to IFN.
In Aim 3, we will determine the consequences of AMPK and SIRT pathway activation after TCR stimulation for chromatin remodeling and transcription factor binding. We will use a novel multidimensional epigenomic assay that relies on in vitro transposition of sequencing tags Into regions of accessible chromatin and that allows mapping the open chromatin and foot-printing transcription factor binding in antigen-specific T cells.
In Aim 4, we will examine epigenetic signatures and miRNA profiles in CD28' effector T cells early after vaccination compare to CD28 T cells that arise with aging and chronic latent infections to explore whether these two populations are related or differ in the expression of genes involved in cell longevity and tissue residency.

Public Health Relevance

Induction of immune memory by vaccination is at the core of preventive medicine. Generation and maintenance of T cell memory declines with age rendering vaccination less efficacious. With the changing demographics of the US and world population, this age-related immune incompetence is a major health problem. This application proposes to examine the regulation of signaling pathways that are important in imprinting epigenetic signatures in memory cells and that are dysfunctional in the elderly.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057266-12
Application #
8835009
Study Section
Special Emphasis Panel (ZAI1-LAR-I)
Project Start
Project End
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
12
Fiscal Year
2015
Total Cost
$462,030
Indirect Cost
$99,645
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Mezger, Anja; Klemm, Sandy; Mann, Ishminder et al. (2018) High-throughput chromatin accessibility profiling at single-cell resolution. Nat Commun 9:3647
Ye, Zhongde; Li, Guangjin; Kim, Chulwoo et al. (2018) Regulation of miR-181a expression in T cell aging. Nat Commun 9:3060
Burke, Rachel M; Whitehead Jr, Ralph D; Figueroa, Janet et al. (2018) Effects of Inflammation on Biomarkers of Vitamin A Status among a Cohort of Bolivian Infants. Nutrients 10:
Burke, Rachel M; Rebolledo, Paulina A; Aceituno, Anna M et al. (2018) Effect of infant feeding practices on iron status in a cohort study of Bolivian infants. BMC Pediatr 18:107
Hagan, Thomas; Pulendran, Bali (2018) Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? From Data to Understanding through Systems Biology. Cold Spring Harb Perspect Biol 10:
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Chen, Yao-Qing; Wohlbold, Teddy John; Zheng, Nai-Ying et al. (2018) Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell 173:417-429.e10
Moore, James; Ahmed, Hasan; Jia, Jonathan et al. (2018) What Controls the Acute Viral Infection Following Yellow Fever Vaccination? Bull Math Biol 80:46-63
Li, Yinyin; Goronzy, Jörg J; Weyand, Cornelia M (2018) DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 105:118-127
Henry, Carole; Palm, Anna-Karin E; Krammer, Florian et al. (2018) From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79

Showing the most recent 10 out of 257 publications