cell responses are elicited to some but not all possible targets of the immune response, and the rules that govern epitope selection are not completely clear. The main goals of this grant application are first to investigate epitope selection in the human T cell response to pathogens and second to investigate mechanisms of pathogens that affect epitope selection. Vaccinia virus and human herpesvirus 6 will be used as model pathogens. These are large-genome DMA viruses with many potential epitopes for which questions of epitope selection and immune hierarchy are particularly relevant. The proposal has three specific aims.
Aim 1 is to determine factors that control epitope selection of the human CD4+ T cell response by using vaccinia virus as a model. Several potential factors affecting epitope selection will be evaluated, including peptide-MHC dissociation kinetics, antigen expression level and location in the infected cell and/or viral particle, and whether the antigen is processed using conventional endosomal processing or autophagy pathways.
Aim 2 is to characterize the human CD4+ and CD8+ T cell response to HHV-6 virus. HHV-6 is a relatively recently discovered beta herpesvirus that establishes a long-lasting latent infection, and most people are carriers as a results of childhood exposure. Viral reactivation can occur under immunosuppressive conditions such a post-transplantation therapy or AIDS. Despite the central role of cellular immunity in controlling this virus, very little is known about the T cell response. In work directed at Aim 2, we will characterized the T cell response to HHV-6, study its specificity, and determine if factors important in epitope selection in vaccinia virus also apply to HHV-6. Many viruses have mechanisms to evade or modulate the immune response against them.
AIM 3 is to characterize modulation of antigen processing and presentation pathways in vaccinia-infected cells, and to determine whether HHV-6 also has mechanisms to alter antigen processing pathways in infected cells.

Public Health Relevance

T cells are an important component of the protective immunity against many pathogens and characterization of the targets of the T cell response is central to the understanding of protective immune responses. Studies in this research grant will help to understand which parts of a virus are selected for targeting by T cells, We will characterize T cell responses to vaccinia virus, the virus used as a vaccine for smallpox, and responses to HHV-6 virus, a recently discovered virus associated with roseola and complications of transplant rejection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057319-10
Application #
8452143
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$289,238
Indirect Cost
$108,413
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Townsley, E; O'Connor, G; Cosgrove, C et al. (2016) Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells. Clin Exp Immunol 183:419-30
Woda, Marcia; Friberg, Heather; Currier, Jeffrey R et al. (2016) Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions. J Infect Dis 214:1001-9
Ramirez, Alejandro; Co, Mary; Mathew, Anuja (2016) CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice. PLoS One 11:e0150425
Becerra-Artiles, Aniuska; Dominguez-Amorocho, Omar; Stern, Lawrence J et al. (2015) A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B. PLoS One 10:e0142871
Woda, Marcia; Mathew, Anuja (2015) Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry. J Immunol Methods 416:167-77
Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro et al. (2015) Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. Exp Biol Med (Maywood) 240:67-78
Tervo, Laura; Mäkelä, Satu; Syrjänen, Jaana et al. (2015) Smoking is associated with aggravated kidney injury in Puumala hantavirus-induced haemorrhagic fever with renal syndrome. Nephrol Dial Transplant 30:1693-8
Thompson, Mikayla R; Sharma, Shruti; Atianand, Maninjay et al. (2014) Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem 289:23568-81
Mathew, Anuja; Townsley, Elizabeth; Ennis, Francis A (2014) Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol 9:411-25
Yin, Liusong; Stern, Lawrence J (2014) A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination. J Immunol Methods 406:21-33

Showing the most recent 10 out of 105 publications