Does the vaccine protect? Soldiers are vaccinated against anthrax due to the high probability of malicious infection with the spores of B. anthracis. But will the vaccine actually protect them from disease morbidity and mortality? There is no means to test the FDA-approved AVA vaccine or any other vaccine candidate directly in humans. Antibody tilers, epitope specificity, and toxin neutralizing activity in vaccinated individuals show a disturbing degree of variability. In concert with our U19 immunologists, this proposal will address these issues using nonhuman primate models of anthrax that mimic human responses. In the previous funding period, we developed, characterized and validated a baboon anthrax bacteremia model that mimics late stage disease in humans after spore germination, demonstrating the critical role of sepsis toward lethality. The current proposal builds on this foundation and is based on the hypothesis that if antibodies of known specificity and neutralizing activity can prevent infection or reduce disease severity due to B.anthracis in validated baboon models, then vaccinated individuals with similar antibodies will likewise be protected. Since not everyone responds in the same way to the vaccine, this information may contribute to risk stratification of vaccinated individuals.
We aim to 1) identify polyclonal and monoclonal antibodies of known epitope specificity and functionality;2) develop and characterize pulmonary spore models in baboons;and use these to 3) test whether the characterized antibodies are protective in the nonhuman primate disease models. The approach is strong because both baboon and human humoral responses to AVA will be characterized, many antigen-specific antibodies will be screened, and the most promising will be comprehensively tested in the baboon disease models. Minimally, we will be able to identify several candidate antibodies that may be useful immediately as passive immunity adjunctive therapeutics. We have a unique opportunity to answer critical questions by combining a genetically diverse nonhuman primate model which has a proven history of mimicking human responses to anthrax challenge with novel technologies provided by the immunologists on this U19 grant.

Public Health Relevance

The risk of anthrax infection is a serious problem for the military and high risk civilians because of the high probability of malicious attacks with the spores that cause infection. There is a vaccine available but individuals have responded very differently to the vaccine, making different antibodies that may or may not protect them. We have a way to separate these different antibodies, find out how they work and test them individually in an animal model that responds like humans. The antibodies that protect against anthrax can be developed immediately as a drug to treat people exposed to anthrax spores.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI062629-09
Application #
8379018
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
9
Fiscal Year
2012
Total Cost
$401,462
Indirect Cost
$67,376
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Liu, Ke; Kurien, Biji T; Zimmerman, Sarah L et al. (2016) X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis Rheumatol 68:1290-300
Garman, Lori; Smith, Kenneth; Muns, Emily E et al. (2016) Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination. Clin Vaccine Immunol 23:664-71
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Devera, T Scott; Lang, Gillian A; Lanis, Jordi M et al. (2016) Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B. Infect Immun 84:194-204
McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany et al. (2016) Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. Elife 5:
Wu, Wenxin; Zhang, Wei; Booth, J Leland et al. (2016) Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 17:111
Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I et al. (2016) Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect 18:615-626
Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J et al. (2016) Antigen nature and complexity influence human antibody light chain usage and specificity. Vaccine 34:2813-20
Patel, Vineet Indrajit; Metcalf, Jordan Patrick (2016) Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. J Investig Med 64:833-47
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226

Showing the most recent 10 out of 105 publications