Domestic security was radically and permanently changed by recent terrorist attacks. With these has come the sobering recognition that we are not adequately equipped to handle the detonation of a radiological dispersal device (RDD or so-called "dirty bomb") or improvised nuclear device (IND). The development of rapid, minimally invasive biodosimetry that is field-deployable and reliable enough to guide decisions for the health care of populations exposed to multiple types of ionizing radiation under various conditions is a high priority. Our project addresses this priority and uses the powerful global profiling capabilities of metabolomics, a biomarker discovery platform uniquely suited for the analysis of biofluids such as blood and urine that require minimally- or non-invasive procedures to acquire. We have used metabolomics to define a urinary radiation response in mice and rats and are using these findings to guide discovery in humans. We propose to expand our research into more real-worid scenarios such as (1) low dose-rate exposures, (2) partial body exposures resulting from shielding of certain organs and tissues, (3) exposures to radioisotopes following an IND or RDD, and (4) mixed exposures to neutrons and low linear energy transfer (LET) radiation typical of an IND. We are also focusing attention on the development of prognostic biomarkers to predict individual outcomes from near lethal exposures as well as the mechanisms involved in biomarker responses. Our studies will be conducted using several inbred strains of mice as well as three genetically modified mouse strains, all of which have varying sensitivities to ionizing radiation. For comparison, human peripheral white blood cell samples will also be analyzed after ex vivo irradiation. Our approach is to harness the exquisite resolution and accurate mass measurement capabilities of the Ultra-Performance Liquid Chromatography-time-of-flight mass spectrometry metabolomics platform that has proven enormously useful to date. Our metabolomics analyses will be run in parallel with transcriptomics analyses (Project 2) and cellular endpoints (Project 1), sharing many of the same samples. Our goals are to define a strategy for minimally invasive biodosimetry for relevant real-worid radiation exposures and to find biomarkers by which the most severe radiation-related injuries may be identified as eariy as possible.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Sprung, Carl N; Ivashkevich, Alesia; Forrester, Helen B et al. (2015) Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 356:72-81
Shuryak, Igor; Lubin, Jay H; Brenner, David J (2014) Potential for adult-based epidemiological studies to characterize overall cancer risks associated with a lifetime of CT scans. Radiat Res 181:584-91
Turner, Helen C; Sharma, P; Perrier, J R et al. (2014) The RABiT: high-throughput technology for assessing global DSB repair. Radiat Environ Biophys 53:265-72
Repin, Mikhail; Turner, Helen C; Garty, Guy et al. (2014) Next generation platforms for high-throughput biodosimetry. Radiat Prot Dosimetry 159:105-10
Laiakis, Evagelia C; Mak, Tytus D; Anizan, Sebastien et al. (2014) Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res 181:350-61
Goudarzi, Maryam; Weber, Waylon; Mak, Tytus D et al. (2014) Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat Res 181:54-64
Forrester, Helen B; Li, Jason; Leong, Trevor et al. (2014) Identification of a radiation sensitivity gene expression profile in primary fibroblasts derived from patients who developed radiotherapy-induced fibrosis. Radiother Oncol 111:186-93
Forrester, Helen B; Sprung, Carl N (2014) Intragenic controls utilizing radiation-induced alternative transcript regions improves gene expression biodosimetry. Radiat Res 181:314-23
Luo, Xiuquan; Suzuki, Masatoshi; Ghandhi, Shanaz A et al. (2014) ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS One 9:e99983
Paul, Sunirmal; Ghandhi, Shanaz A; Weber, Waylon et al. (2014) Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiat Res 182:380-9

Showing the most recent 10 out of 85 publications