All three projects in this Consortium require advanced biostatistics, informatics and data management techniques, both for data analysis and for tracking of results obtained with samples shared across projects. Led by Michael Bittner at TGen and Jeffrey Idle at the University of Bern, Core E will provide a variety of statistical and analytical support to ail three Projects, as well as to the Pilot Projects. Core E will also provide central, secure hosting for data exchange among the Consortium members. We will provide the following services for the three projects: 1. General statistical support for the three research projects. Core C (Irradiation) and the Pilot projects, in terms of experimental design and data analysis. Monte-Cario and non parametric approaches are commonly applied here. 2. Data viewing and analytical distribution testing to identify univariate trends among potential genomic or metabolomic biomarkers in cells as they react to radiation, to find independently informative, radiation damage biomarkers that may be used to gauge the level of severity of damage for a given individual exposed to a particular dose and type of radiation. 3. Multivariate analysis to identify groups of genomic or metabolomic biomarkers that act collaboratively to carry out the cellular response to radiation. 4. Random forests machine learning and self-organizing map analysis. 5. Contextual analysis to develop genomic or metabolomic biomarker panels that are specific for particular cell types, dose scenarios, or population subgroups. 6. A common secure data-hosting facility so that the considerable amount of data to be shared, due to the use of shared biological materials, can be readily exchanged. In summary. Core E will continue to provide the bioinformatics that will be crucial to the success of the CMCR program, and will provide statistical support in terms of experimental design and data analysis for all Consortium members.

Public Health Relevance

The bioinformatics and statistical support provided by this Core will be necessary for the development of the most robust possible biodosimetry applications in each of the projects. The integration of data across projects has the further potential to provide mechanistic insight into radiation response and radiation sensitivity

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067773-09
Application #
8519243
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$302,453
Indirect Cost
$84,717
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Rudqvist, Nils; Laiakis, Evagelia C; Ghandhi, Shanaz A et al. (2018) Global Gene Expression Response in Mouse Models of DNA Repair Deficiency after Gamma Irradiation. Radiat Res 189:337-344
Suresh Kumar, M A; Laiakis, Evagelia C; Ghandhi, Shanaz A et al. (2018) Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiat Res 190:53-62
Zheng, Zhihong; Fan, Shengjun; Zheng, Jing et al. (2018) Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma. J Hematol Oncol 11:29
Beach, Tyler A; Groves, Angela M; Johnston, Carl J et al. (2018) Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 94:1104-1115
Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor et al. (2018) Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 13:e0191402
Broustas, Constantinos G; Harken, Andrew D; Garty, Guy et al. (2018) Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation. BMC Genomics 19:504
Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L et al. (2018) Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine. J Am Soc Mass Spectrom 29:1650-1664
Bellare, Anuj; Epperly, Michael W; Greenberger, Joel S et al. (2018) Development of tensile strength methodology for murine skin wound healing. MethodsX 5:337-344
Moquet, Jayne; Higueras, Manuel; Donovan, Ellen et al. (2018) Dicentric Dose Estimates for Patients Undergoing Radiotherapy in the RTGene Study to Assess Blood Dosimetric Models and the New Bayesian Method for Gradient Exposure. Radiat Res :
Cruz-Garcia, Lourdes; O'Brien, Grainne; Donovan, Ellen et al. (2018) Influence of Confounding Factors on Radiation Dose Estimation Using In Vivo Validated Transcriptional Biomarkers. Health Phys 115:90-101

Showing the most recent 10 out of 185 publications