Our studies to date have laid the groundwork for applied gene expression biodosimetry, focusing on signature development for whole-body high dose rate external photon exposure. Other types of radiation exposures, including partial-body exposure, internal emitters, low dose rate, and neutron exposure, will also impact triage needs, and may produce distinct responses, or variations in the dosimetric signatures already identified. As estimates of dose provide only a general idea ofthe radiation injury expected across a population, it will also be important to develop signatures that may provide a more accurate prediction of radiation injury response and outcome on an individual basis. Project 2 will use a functional genomics approach to develop refined gene expression signatures of radiation exposure and dose addressing the two main renewal themes: first, the impact of different radiation modalities (partial-body exposure, internal emitters, low dose rate, and neutron exposure), and second, prediction of individual radiation sensitivity. Microarray analysis will be applied to human and murine samples to build upon the predictive signatures we have developed in the first funding period of this grant and to better adapt them to realistic radiation exposure scenarios. Mouse models will also be used to nvestigate the mechanistic underpinnings ofthe gene expression signatures that predict radiation dose and sensitivity. Project 2 will be tightly integrated with Projects 1 and 3 through the Irradiation Core (Core C), the Informatics Core (Core E), and through a sample sharing approach using both human blood irradiated ex vivo and in vivo irradiated mice. This sample sharing approach will also help to enable development by the Informatics Core of integrative analysis approaches spanning all three Projects and using data from the microRNA, mRNA, metabolomic, and cellular levels. Such an integrative approach will help provide mechanistic insight into the underpinnings of both transcriptomic and metabolomic signatures, as well as suggesting the best combinations of high-throughput biodosimetry assays to apply in specific practical scenarios.

Public Health Relevance

A dirty bomb or an improvised nuclear device could result in mass casualties from multiple types of radiation exposure, and a need for rapid, high-throughput biodosimetry to identify those who most urgently require treatment. We will extend the gene expression signatures that we have developed to date to be useful for partial body, low dose rate, internal emitter, and neutron exposures, and also for potential identification of individuals with particular sensitivities to radiation.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Sprung, Carl N; Ivashkevich, Alesia; Forrester, Helen B et al. (2015) Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 356:72-81
Shuryak, Igor; Lubin, Jay H; Brenner, David J (2014) Potential for adult-based epidemiological studies to characterize overall cancer risks associated with a lifetime of CT scans. Radiat Res 181:584-91
Turner, Helen C; Sharma, P; Perrier, J R et al. (2014) The RABiT: high-throughput technology for assessing global DSB repair. Radiat Environ Biophys 53:265-72
Repin, Mikhail; Turner, Helen C; Garty, Guy et al. (2014) Next generation platforms for high-throughput biodosimetry. Radiat Prot Dosimetry 159:105-10
Laiakis, Evagelia C; Mak, Tytus D; Anizan, Sebastien et al. (2014) Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res 181:350-61
Goudarzi, Maryam; Weber, Waylon; Mak, Tytus D et al. (2014) Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat Res 181:54-64
Forrester, Helen B; Li, Jason; Leong, Trevor et al. (2014) Identification of a radiation sensitivity gene expression profile in primary fibroblasts derived from patients who developed radiotherapy-induced fibrosis. Radiother Oncol 111:186-93
Forrester, Helen B; Sprung, Carl N (2014) Intragenic controls utilizing radiation-induced alternative transcript regions improves gene expression biodosimetry. Radiat Res 181:314-23
Luo, Xiuquan; Suzuki, Masatoshi; Ghandhi, Shanaz A et al. (2014) ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS One 9:e99983
Paul, Sunirmal; Ghandhi, Shanaz A; Weber, Waylon et al. (2014) Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiat Res 182:380-9

Showing the most recent 10 out of 85 publications