The Fabrication Core consists of two currently existing facilities, the Design and Instrumentation Shop (DIS) at the Columbia Center for Radiological Research, and the Advanced Robotics and Mechanisms Applications (ARMA) Laboratory at the Columbia Department of Mechanical Engineering. Both these facilities have been central to the current CMCR developments to date. Both the DIS and ARMA provide services to the three Projects either directly or, frequently, through the Irradiation Core. We expect that the Fabrication Core will use approximately 50% of its resources for Project 1, 15% of its resources for Project 2, 25% of its resources for Project 3, and 10% of its resources for Pilot projects. For clarity, anticipated services provided by the Fabrication Core are categorized between those that are supporting developments with Projects, and those that are customizing currently available irradiation facilities to provide specific relevance to CMCR homeland security scenarios. Examples include Fabrication of new modules for the RABIT: 1. RABIT module for protein repair kinetics (for Project 1) 2. RABIT module for rapid mBAND analysis (for Project 1) 3. RABIT module for serum harvesting (for Project 3) Customizing currently available irradiation facilities: 4. Precision shield for partial-body irradiations (for all Projects) 5. IND-like neutron irradiation setup (for all Projects) 6. Micro-RT organ conformal irradiator (for all Projects) 7. Mouse housing for low dose rate studies (for all Projects) As has happened extensively in the current 4+ years of the Columbia CMCR, we anticipate that the Fabrication Core will also provide support for new needs that arise as the CMCR research develops, and new Pilot Projects come on line.

Public Health Relevance

A large scale radiological event could result in mass casualties from multiple types of radiation exposures, and there is thus a need for rapid, high-throughput biodosimetry to identify those who most require treatment. The Fabrication Core will provide facilities to support the extension of high-throughput approaches to be useful for partial body, low dose rate, internal emitter, and neutron exposures, and also for potentially identifying Individuals with particular sensitivities to radiation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067773-10
Application #
8705357
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
10
Fiscal Year
2014
Total Cost
$297,970
Indirect Cost
$89,309
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Laiakis, Evagelia C; Mak, Tytus D; Strawn, Steven J et al. (2018) Global metabolomic responses in urine from atm deficient mice in response to LD50/30 gamma irradiation doses. Environ Mol Mutagen 59:576-585
Eppensteiner, John; Davis, Robert Patrick; Barbas, Andrew S et al. (2018) Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults. Front Immunol 9:190
Vera, Nicholas B; Chen, Zhidan; Pannkuk, Evan et al. (2018) Differential mobility spectrometry (DMS) reveals the elevation of urinary acetylcarnitine in non-human primates (NHPs) exposed to radiation. J Mass Spectrom 53:548-559
Lacombe, Jerome; Sima, Chao; Amundson, Sally A et al. (2018) Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 13:e0198851
Lee, Younghyun; Pujol Canadell, Monica; Shuryak, Igor et al. (2018) Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 8:13557
Rudqvist, Nils; Laiakis, Evagelia C; Ghandhi, Shanaz A et al. (2018) Global Gene Expression Response in Mouse Models of DNA Repair Deficiency after Gamma Irradiation. Radiat Res 189:337-344
Suresh Kumar, M A; Laiakis, Evagelia C; Ghandhi, Shanaz A et al. (2018) Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiat Res 190:53-62
Zheng, Zhihong; Fan, Shengjun; Zheng, Jing et al. (2018) Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma. J Hematol Oncol 11:29
Beach, Tyler A; Groves, Angela M; Johnston, Carl J et al. (2018) Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 94:1104-1115
Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor et al. (2018) Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 13:e0191402

Showing the most recent 10 out of 185 publications