Hematopoietic failure is the major cause of death in Acute Radiation Sickness. Unfortunately, few therapies exist that are effective at mitigating radiation-induced damage to the hematopoietic system. We hypothesized that cells within the bone marrow microenvironment, specifically endothelial cells (ECs), regulate hematopoietic regeneration following radiation injury. Our recent studies validated this hypothesis, demonstrating that human ECs produce soluble proteins that induce the expansion of human hematopoietic stem cells (HSCs) in vitro and transplantation of ECs alone rescued animals from lethal radiation exposure and accelerated hematopoietic reconstitution in vivo. A genetic screen revealed pleiotrophin (PTN), a heparin binding growth factor with no known function in hematopoiesis, as 25-fold overexpressed in ECs with HSC-supportive activity. Our preliminary studies demonstrate that treatment with PTN induces a 10-fold expansion of murine HSCs in culture and systemic administration of PTN to irradiated mice demonstrates that PTN treatment markedly accelerates reconstitution of BM HSCs and progenitor cells compared GCSF- or saline-treated controls. We hypothesize that PTN regulates the selfrenewal and regeneration of BM HSCs in vitro and in vivo and that PTN is an excellent candidate mitigator of radiation-induced hematopoietic failure. In order to test our hypothesis, we propose the following Specific Aims: 1) Determine the function of PTN in regulating HSC self renewal and homeostasis. 2) Determine if PTN can mitigate radiation-induced myelosuppression in vivo, and 3) Test the efficacy of PTN in mitigating human hematopoietic cell toxicity from radiation injury. Our broad objective in this proposal is to deliver a translatable and potent mitigator of radiation-induced hematopoietic injury. Our preliminary results demonstrate that PTN is a soluble growth factor for murine and human HSCs and systemic administration of PTN for 1 week induces the accelerated regeneration of BM HSCs and progenitor cells in vivo compared to GCSF-treated mice. PTN has therapeutic potential as a mitigator of the radiation-induced hematopoietic syndrome.

Public Health Relevance

In a radiation mass casualty event, the majority of deaths from radiation sickness will be caused by bone marrow failure. Unfortunately, few treatments exist to ameliorate radiation-induced toxicity to the bone marrow. We have discovered a novel protein which stimulates the self renewal of bone marrow stem cells in vitro and the regeneration of the blood system in vivo after radiation injury. This protein is a candidate therapeutic for the treatment of victims of acute radiation sickness.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067798-09
Application #
8508651
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$232,312
Indirect Cost
$40,638
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Mont, Stacey; Davies, Sean S; Roberts Second, L Jackson et al. (2016) Accumulation of isolevuglandin-modified protein in normal and fibrotic lung. Sci Rep 6:24919
Hanbury, David B; Peiffer, Ann M; Dugan, Greg et al. (2016) Long-Term Cognitive Functioning in Single-Dose Total-Body Gamma-Irradiated Rhesus Monkeys ( Macaca mulatta ). Radiat Res 186:447-454
Koechlein, Claire S; Harris, Jeffrey R; Lee, Timothy K et al. (2016) High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nat Commun 7:12169
DeBo, Ryne J; Lees, Cynthia J; Dugan, Greg O et al. (2016) Late Effects of Total-Body Gamma Irradiation on Cardiac Structure and Function in Male Rhesus Macaques. Radiat Res 186:55-64
Batinic-Haberle, Ines; Tovmasyan, Artak; Spasojevic, Ivan (2015) An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 5:43-65
Gomez, John C; Yamada, Mitsuhiro; Martin, Jessica R et al. (2015) Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. Am J Respir Cell Mol Biol 52:349-64
Hanbury, David B; Robbins, Mike E; Bourland, J Daniel et al. (2015) Pathology of fractionated whole-brain irradiation in rhesus monkeys ( Macaca mulatta ). Radiat Res 183:367-74
Krauss, Jennifer L; Zeng, Rong; Hickman-Brecks, Cynthia L et al. (2015) NLRP12 provides a critical checkpoint for osteoclast differentiation. Proc Natl Acad Sci U S A 112:10455-60
Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S et al. (2015) Response to letters regarding article, ""Cumulative radiation exposure and cancer risk estimation in children with heart disease"". Circulation 131:e419-20
Cheong, Woo-Chang; Kang, Hye-Ri; Yoon, Hyunyee et al. (2015) Influenza A Virus NS1 Protein Inhibits the NLRP3 Inflammasome. PLoS One 10:e0126456

Showing the most recent 10 out of 178 publications